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1 Introduction

One of the most important questions in thermodynamics is how to convert
thermal energy into work. For such tasks there exist many classical engines,
for example the steam machines or gasoline engines. Those ideas also gener-
alize to quantum systems. In this master-project, a three-level maser, driven
by the coupling of a hot and a cold bath is quantified. The three-level maser
is a quantum heat engine (QHE). The work extraction from a classical heat
engine is often a moving piston. But in this case it is a driving field. In
the year 1916 Albert Einstein already discussed three ways of light-matter-
interaction (spontaneous emission, absorption, and stimulated emission)[2].
In the paper from Scovil and Schulz-DuBois 1959 [5] investigated whether
a laser is a heat engine. In this paper, they toke a maser as a device to
transform heat into coherent radiation, because heat can make a population
inversion. In their thermodynamic analysis, they used a single-atom laser.
They made a groundwork for emerging theory of quantum thermodynamics.
In practice and also for the calculations, two different reservoirs are neces-
sary. The high-temperature reservoir can be realized by a fast and accurate
estimation of the thermal occupation of propagating microwave modes [4].
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2 System and model

2.1 3-level-Maser model

Figure 1: Schematic representation of a three-level maser heat engine con-
tinuously coupled to two reservoirs of temperatures Th; and Tc. The three
energy levels are described by E1, E2, E3. The system is interacting with a
quantized single mode field. λ represents the strength of matter-field cou-
pling. The ωh, ωc, ωcav describes the transition frequencies.

A maser/laser consists of two elements. One of them is a gain medium and
the other one is an optical resonator. The gain medium is often a material
with an atomic transition between two atomic states. When an atom decays
from an energetically higher state to an energetically lower state, a photon is
created. In a three level system the three energy levels are E1, E2, E3 shown
in Fig. 1. In a first part the system gets pumped from the lowest E1 level
to the highest level E3. The resonator should have a longer decay time, so
that a population inversion can build up. This means that the system is in
the energetically higher state. From this state they come almost exclusively
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through stimulated emission into the lower state E1. The cavity is build of
two mirrors. One of the cavity has a small leaking, so that a small part of
the photons can leave the cavity. This leaking is quantified by a constant
κ. Stimulated emission is a necessary condition for coherent light. Coherent
light means all the photons have the same phase and same frequency [2].
Here we consider that higher level will be reached with a interaction of a
hot bath. We denote the transition frequencies of ωh = (E3 − E1)/ℏ, ωc =
(E2 − E1)/ℏ and ωcav = (E2 − E1)/ℏ. Our cavity is in resonance, therefore
we set ωcav = ωf . In this three-level system each thermal photon from the
bath trigger a lasing photon. Jh iast the heat flow from the hot bath, and
Jcav is the heat flow in the cavity. The efficiency of the three-level system is
then given by the following formula:

Jcav
Jh

= ηmaser =
ωcav

ωh

< 1− Tc

Th

. (1)

2.2 Master-Equation

An arbitrary state of a cavity and a atom can be described by a total density
operator ρ̂(t). The complete description of the total system’s state at a given
time t is encoded in this density operator ρ̂ [2]. The master equation is:

ρ̇(t) =
1

iℏ
[H, ρ] + Lhρ+ Lcρ+ Lcavρ. (2)

To derive the ρ̂ we can solve a specific differential equation. This equation is
called Lindblad-master-equation (2). The first part of eq (2) is the von Neu-
man equation.This part of the equation is unitary and therefore the process
is reversible. H is the the Hamiltonian operator. The Hamiltonian describes
the energy. The field of the laser/maser is composed of three crucial parts;
the three-level system states, the cavity field, and the interaction between
the cavity and the state of the system. The three-level system and the cavity
are described in Hfree The total Hamiltonian,

H = Hfree +Hint, (3)

consist of two parts; The part of the free Hamiltonian, where i describe the
different states,

Hfree =
3∑

i=1

ℏωi |i⟩ ⟨i|+ ℏωcava
†a, (4)

and the interaction Hamiltonian or Jaynes-Cummings Hamiltonian:

Hint = ℏg(σ12a
† + σ21a). (5)
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g is the coupling constant between the system and the photons.
The interaction with the various environmental heat baths is described

by the non-unitary Liouvillian. Lh describe the interaction the system and
the hot bath, Lc is the contribution from the interaction with the cold bath
coupled with the atom. Lcav describe the loss of the photons which are in the
cavity. Those Lh,c,cav are also called superoperators, which act on the density
operator. A superoperator is a linear operator acting on a vector space of
linear operator. The interaction with the various environmental heat baths
is described by the Liouvillian:

Lhρ̂ =
γh
2
(n(ωh, Th) + 1) · D[σ13]ρ+

γh
2
n(ωh, Th) · D[σ31]ρ

Lcρ̂ =
γc
2
(n(ωc, Tc) + 1) · D[σ23]ρ+

γc
2
n(ωc, Tc) · D[σ32]ρ

Lcavρ̂ = κ((ωcav, Tf ) + 1) · D[a]ρ+ κn(ωcav, Tf ) · D[a†]ρ.

(6)

σ12 is the transition operator and defined as σ12 = |1⟩ ⟨2|. Similar for σ13 =
|1⟩ ⟨3| , σ23 = |2⟩ ⟨3| . The transition operator describe the transition between
one atomic state to a other. D is defined with following formula

D[A]ρ = (2AρA† − A†Aρ− ρA†A). (7)

Where A represents one of the transition operators σab or a ladder operator a.
The Bose-Einstein occupation number is the mean number of excitations in
the reservoir damping the oscillator. It describes the mean occupation num-
ber ⟨n(E)⟩ of a quantum state of energy E, in thermodynamic equilibrium at
absolute temperature T for identical bosons as occupying particles.n depends
on the temperature and the frequency. n is defined as: ni(ωi, T ) =

1

exp[
ℏωi
kbTi

]−1
.

κ describes the rate of photons which leave the cavity. The prefactor γc, γh
describes the spontaneous decay rates. We set γc, γh = γ = 1 in this cal-
culation and express also κ and ωi in therms of γ. In this case the master
equation is solved for the steady states. A steady state is a state or condition
of a system or process, that the density matrix of the state does not change in
time, or the changes are negligibly. Therefore all observables do not change
in time either. It contains the whole description of the three-level system
and the cavity.

3 Methods

3.1 Implementation of the three-level-system in qutip

The master equation is solved numerically. For that it is necessary to define
the constants first. In our case, only the transition between |1⟩ and |2⟩ inter-
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act with the light. Defined as constants are the three different Bose-Einstein
occupation nh, nc and nf The transition-operators σab are made by qutip [3]
implementation of the tensor product of |a⟩ ⟨b| and the identity matrices of
size of maximum photon number. |1⟩ and |2⟩ are basis states. For our pur-
pose, it will always suffice to truncate the photon’s Hilbert space at n = 29.
So we get 90 x 90 matrices. The projectors are implemented similarly, with
the matrix |a⟩ ⟨a| With those it is easy to construct the Hamiltonions, Hfree

and Hint, as in Eq. (4) , Eq .(5). To calculate the the density matrices for
steady states we can also use a qutip function. This function needs the total
Hamiltonian and a list of the non-unitary operators as arguments. As output
of the function steady-state we get the density-matrices for steady-states. [3]

4 Lasing transition

4.1 Wigner function and phase-averaged coherent states

The output of a laser is coherent light. The quantum description of coherent
light is a coherent state. The photon number distribution of coherent light is
a Poisson distribution. In our case the output is a phase-averaged coherent
state (PHAV). Thats a coherent state which has a averaged phase ϕ around
2π. Randomizing the phase of a coherent state doesn’t change the photon-
number distribution.

A Wigner function is a representation of a general quantum state of light
[1]. The function describes the probability density in phase space.

w(x, p) =
1

2πℏ

∫ ∞

−∞
dξe

−ipξ
ℏ ⟨x+

1

2
ξ| ρ |x− 1

2
ξ⟩ . (8)

TheWigner function of a coherent and a phase-average-state is non-Gaussian,
because of Eq. (8) is a not a Gaussian. So we get a new term of exp(iπϕ) in
it. The standard coherent state |α⟩ can be represented by following formula:

|α⟩ = e
−|α|2

2

∞∑
n=0

|α|neinϕ√
n!

|n⟩ . (9)

The PHAV state will be obtained by integrating over the phase ϕ.

ρPHAV =

∫ 2π

0

dϕ

2π
|α(ϕ)⟩ ⟨α(ϕ)| =

∞∑
n=0

pnn |n⟩ ⟨n| , (10)
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thus is equal to

ρPHAV =
∞∑
n=0

exp(−|α|2) |α|
2n

n!
|n⟩ ⟨n| . (11)

Eq. (11) is implemented in python to visualize a photon number distribution
and Wigner plot Eq (8), shown in Fig 2. A Fock plot shows the occupa-
tion probability pnn. So the goal of this work is to find a nh which yield a
PHAV state, as in [1] For the Wigner function (8) we finally get the following
equation

w(x, p) = 2 exp
[
−2

(
|α|2 + |x+ ip|2

))
I0(4|α||x+ ip|). (12)

I0 is the first Bessel function. This function is plotted in Fig. 2

Figure 2: The photon number distribution, also called Fock plot of the density
matrix of ρPHAV with the parameter α = 3.5, is shown in Fig. 2 at the left
side. At The right side is the Wigner function illustrated.
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4.2 Double threshold behaviour and population inver-
sion

When we work with density matrices, it is common to work with expectation
values with ⟨A⟩ = Tr[A · ρ]. A is an operator and describe a measurement.
With this, we can calculate the expectation value from an Operator. The
population inversion is seen by calculating the probability for the levels num-
ber (Tr[|i⟩ ⟨i| ρ]) and i stands for the different occupation of the state. Fig.
3a. With high nh the probability for the system to stay in a the state |2⟩
increases as well. If P2 > P1, we speak about a population inversion. Las-
ing starts once a threshold for emission is attained, however, increasing the
heat flow too much will end up producing thermal light instead of lasing.
This phenomena is called a double threshold behaviour [2]. To investigate
this double threshold behaviour, we study the steady states of a three-level
system. This double threshold behaviour can can be explained by the Zeno
effect. The Zeno effect describes that the transition from one state to the
other can be stopped by rapid successive measurements. The system be-
haves similarly when sufficient stimulation is applied quickly. With the plot
Tr[nρ] = ⟨n⟩ against different nh Fig. 3b we see this double threshold be-
haviour because, when the hot bath temperature nh is too low (nh ≈ nc)
we have also a low photon number. With increasing nh, population inver-
sion happens, the photon number increase and the output looks like a PHAV
state, see Fig. 2. With too high nh the average photon number decreases
again and this system shows a double threshold behaviour, the excitation is
too weak, and we say that the system is below the lasing threshold with the
output light of a thermal state.
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Figure 3: In Fig. 3a the probability for an atom to stay in a state |1⟩ , |2⟩
or |3⟩ vs nhis plotted. With a increasing nh P2 increase as well until a
population inversion happens P2 > P1. The probability for P1, P2, P3 is in
the region of nh = 5 well distributed. The parameters for the first plot are
nc = 0.02, nf = 0.02, κ = 0.01γh. The blue lines mark the values of nh for
which the Wigner functions are plotted. In Fig. 3b we see, the expectation
value of the photon number versus nh.

An other way to see the double threshold behaviour of the system is to
analyse the Wigner function plot. For that the reduce density matrix ρfree
will be used to make Wigner and Fock plots numerically. For the calculation
of the coherent state, the information about the system state is not necessary
and the system gets traced out. It is possible to make the partial trace
of ρ, to trace out the reduced density matrices ρfree. The first result are
plots from the photon number distribution and the Wigner function. For all
calculations, I set the parameters γh, γc are set to γ = 1. And κ = 0.028γh I
calculated Wigner functions for this set of parameters, shown in Fig. 4 and
Fig. 5.
Those rings which are shown in Fig. 4 and Fig. 5, are similar to the plot of
Fig. 2. If we have a small κ means less photons will leave and stay in the
cavity. we see that in the plot of the photon number distribution. In the first
plot I set a high leaking-parameter κ = 1γh. Shown in Fig. 4. This means
that many photons leave the cavity, and only a few remain in the cavity.
We see, that the occupation-number the photon number distribution is most
zero and the probability for one photon is just 0.1.
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Figure 4: The parameters for the first plot are nh = 2.6, nc = 0.001, nf =
0.02, κ = 1γ. With the factor of κ = 1γh the leaking is too high for a lasing
state.

In the plots of Fig 5 I took the same parameters again, but with a lower
κ. We get more photons in the cavity. We see the distribution in the photon
number distribution plot and a PHAV state in the Wigner function.
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Figure 5: For all of the four the parameters are nc = 0.001, nf = 0.02, κ =
0.1γ. Cavity with a small leaking. a)The parameters for nh are nh = 0.2.
b)nh = 2.6 c) nh = 5.5 d)nh = 20. 4b,4clooks similar to a PHAV state
from Fig 2. The blue lines from Fig 4 mark the values of nh where the plots
from Fig 4 are done for.

We see in Fig 5a that start to get a state which looks like PHAV state.
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If we increase 2nh, then the cavity photon number increases again when
increasing nh at the high temperature regime, as shown in Fig. 5b, Fig 5c.
If we further increase nh > 10, we see the double threshold behavior. The
state of Fig. 5d is done in a very high temperature region with the value of
nh = 20. In this case the output is a similar to a thermal state, so no PHAV
state anymore and the output is below the threshold.

5 Thermodynamics

5.1 Heat currents

The first law of Thermodynamics says: ”The change in internal energy of a
closed system is equal to the sum of the change in heat and the change in
work.” That is equal to the equation

∆U = ∆Q+∆W. (13)

In quantum mechanics the equation can be rewritten as

d⟨H⟩
dt

= Tr[Hfree · L[ρ]] + Tr[∂tHρ]. (14)

In the case of this calculation with steady states ∆U or d⟨H⟩
dt

is zero. ∆W is
also zero. This can be justified because ∂tH = 0 and therefore the the first
law says that ⟨Jtot⟩ have to be zero. To calculate the average heat flow we
can take the trace from Tr[Hfrre · L[ρ]].

⟨Jtot⟩ = Tr[Hfree · Lh[ρ]] + Tr[Hfree · Lc[ρ]] + Tr[Hfree · Lcav[ρ]]. (15)

A part of this work was to calculate the occupation probability of the states
analytically. The calculation is made in two steps. For the hot and the cold
bath, we have a transition-operators in the trace. The equation gave the
following result:

⟨Jh⟩ = Tr[Hfree · Lh[ρ]] = ℏωhγh(2nh + 1)(P1− P3), (16)

The same calculation can be done for the interaction with the cold bath.

⟨Jc⟩ = Tr[Hfree · Lc[ρ]] = ℏωcγc(2nc + 1)(P2− P3), (17)

For the calculation the Tr[Hfree · Lcav], I get the following result

⟨Jcav⟩ = T [Hfree · Lcav[ρ]] = 2ℏωcavκ(nf − ⟨a†a⟩). (18)
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Jh is a energy input in the system, therefore it has a other signe as Jc, Jcav.
The calculations are shown in Fig. 8 and Fig. 9 in the Appendix. With the
density matrix it is possible to calculate the heat flux by taking Tr[H · L[ρ]].
and plot this for different g. I calculated the expected heat flows depends on
he cold, the hot bath and the interaction with the cavity are shown in Fig.
6.

Figure 6: Energy flux vs g with the parameters The parameters for the
plot are nh = 2.6, nc = nf = 0.02, κ = 0.01γ. For the for the frequencies
ωf = 30γ, ωh = 150γ, ωc = 120γ are used.

5.2 Entropy production

Another relevant concept is the entropy. It is also a physical property which
is described by the following equation.

∆S = σ − Q

T
(19)
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the second law of thermodynamics says that, for a isolated system, the en-
tropy always remains the same or increases, but never becomes smaller. In
terms of instantaneous quantities, this principle can be expressed by the
entropy production rate σ̇, which should always be larger or equal than zero.

σ̇ ≥ 0 (20)

Since we are interested in steady-state quantities, it is possible to calcu-
late the entropy production rate as the sums of the heat flow contributions
(16)-(18) divided by the respective bath temperature (14). The entropy pro-
duction rate for steady state is then given by the formula

σ̇ =
Jc

T (nc)
+

Jh
T (nh)

+
Jcav

T (ncav)
. (21)

The entropy production rate for different nh is plotted in Fig. 7. We see
a clear maximum at the value of nh ≈ 5. The contribution to the entropy
production rate from the hot bath is higher as the contribution from the
cold bath, this is because the temperature of the hot bath is much higher,
and therefore σ = Jh

T
is smaller than the entropy production rate of the cold

bath. We also see that the plot of the entropy production rate resembles
that of the average photon number Fig. 3. The blue lines in Fig. 5 mark the
values of nh for which the Wigner functions are plotted. In Fig. 3b we see,
the expectation value of the photon number versus nh. When we compare
the lasing output Fig. 5 with the entropy, we see that the lasing output is
a PHAV state, when the entropy production rate is high. If nh is large, the
coupling with the hot bath dominates with respect to the coupling to the
cold bath and to the photons leaking outside the cavity. The larger nh, the
closer the system gets to be an equilibrium state with the hot bath. That’s
why the entropy production rates decreases for large nh. As consequence we
get a PHAV state as laising output again.
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Figure 7: The entropy production for different nh. The parameters for the
first plot are nc = 0.001, nf = 0.02, κ = 1γ. As in paper [2] is used the values
for the frequencies ωf = 30γ, ωh = 150γ, ωc = 120γ.
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6 Conclusion and outlook

In those numerical calculations are found states which look similar to PHAV
states, driven by the coupling of two different thermal bath. We found the
double threshold behavior from the system, by calculating different energy
flux for different nh. As in the paper [2]. With the condition that nc, ncav

is almost zero, the leaking κ is small too, and the hot bath received a value
between 1 and 5.5. When we compare the Winger functions of the numerical
calculated states from a our three-level system Fig 5b,5c with the Wigner
plot of a PHAV state Fig. 2, we see, that they are pretty similar. As
conclusion; it’s possible to get a phase average coherent state. In Fig. 6
we see the average of the current, calculated with the formula Eq. (15)
for different coupling constants g. The conclusion from Fig. 6 is, that the
current increase at most between the 0 < g < 0.25. In Fig. 5a we see the
probability in which state the system is. If we increase the temperature from
the hot bath, we see that the occupation probability of P2 increase as well.
A population inversion is visible. Fig. 3 helps to get some conclusion about
the system starts lasing and when it stops. With a too small temperature, It
has not enough energy in the system and the photon number is low Fig 5a.
If nh increase more, a maximum lasing output is reached Fig 5b,5c. If the
temperature increasing further, the system is in the highest level, therefore
the Rabi oscillation between E0 and E2 does not exist anymore and we get
a thermal state Fig 5d. At higher heat of the warm bath, dephasing of the
system occurs. Thus, it interacts more with the environment. This has the
same effect as if the system is measured often. The Zeno effect then make that
the system no longer oscillates between two different states. The consistent
numerical and theoretical results we have obtained in the characterization of
both PHAV states. In further calculation we will look at the thermodynamic
uncertainty relation (TUR) and a second laser as input.
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7 Appendix

The hole Master equation without any substitution:

Lρ̂ =
γh
2

[
1

exp[ ℏωh

kbTh
]− 1

+ 1

]
·
(
2σ13 · ρ · σ†

13 − σ†
13σ13ρ− ρσ†

13σ13

)

+
γh
2

[
1

exp[ ℏωh

kbTH
]− 1

]
·
(
2σ31 · ρ · σ†

31 − σ†
31σ31ρ− ρσ†

31σ31

)

+
γc
2

[
1

exp[ ℏωc

kbTc
]− 1

+ 1

]
·
(
2σ23 · ρ · σ†

23 − δ†23σ23ρ− ρσ†
23σ23

)

+
γc
2

[
1

exp[ ℏωc

kbTc
]− 1

]
·
(
2σ32 · ρ · σ†

32 − σ†
32σ32ρ− ρσ†

32σ32

)

+κ

[
1

exp[
ℏwf

kbTf
]− 1

+ 1

]
·
(
2aρa† − a†aρ− ρa†a

)

+κ

[
1

exp[
ℏwf

kbTf
]− 1

]
·
(
2a†ρa− aa†ρ− ρaa†

)

(22)

7.1 Software

For the implementation of the three-level-system in a cavity, I used qutip.
Qutip is a python library, which allows to solving master equation fast. Fur-
ther calculations and methods were easily applied in python.
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Figure 8: Calculation for Tr[HL].
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Figure 9: Calculation for Tr[HL].
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