
Power and Heat in Input
Ouput Theory

A thesis presented for the degree of Bachelor of Science by

Max Schrauwen

Abstract

In quantum thermodynamics, open quantum systems can be described by Marko-
vian quantum master equations. A different approach for describing open quan-
tum systems that are probed with light is provided by input output theory. In
this thesis we will compare two definitions for heat and work that are moti-
vated by the two theoretical approaches, master equations and input output
theory and quantify the differences between these two definitions. Furthermore
we show that these definitions are both consistent with a set of thermodynamic
laws for a simple harmonic oscillator model and pave the way towards a new
framework of describing open quantum systems where the system’s output is
not entirely regarded as dissipation, but retains a coherent part, able to perform
work.
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Introduction

One of the most fundamental questions in quantum thermodynamics deals with
the decomposition of energetic changes into heat and work. Contrary to classi-
cal thermodynamics, heat and work do not have an unambiguous definition in
quantum thermodynamics. Many different definitions may arise in the pursuit
of decomposing the energetic changes of open quantum systems [1]. Never-
theless, heat and work remain fundamental quantities in the field of quantum
thermodynamics as they describe the usefulness or the ability to perform work
for any given system output. Quantifying the power and heat output of any
system is therefore crucial in many fields of research concerning open quantum
systems [2, 3].
However, as mentioned above, there is no unequivocal method of defining heat
and work for open quantum systems and the absence of such a method may lead
to confusion or incoherent results. One instance where this may be illustrated
is in a case concerning input output theory, where the definition of work as the
energy stored in the coherent part of the light as made by [4] is in contradiction
to the commonly used definition in the framework of the quantum master equa-
tions. In light of this discrepancy, we express the existing definitions, consistent
with the master equations, in terms of the central objects of input output theory
and study the differences of this definition with the definition by [4].
We find that whereas in the conventional approach the output of the system
consists mainly of dissipated heat, the new approach by [4] regards part of the
output as work.
To shed light on the origin of this different viewpoint, we investigate the entropy
production rate for both definitions and derive a second law of thermodynamics
for both definitions for a simple system concerning a harmonic oscillator.
By exploring the definitions of heat and work we gain a deeper understanding
of the fundamental nature of the energetic changes in open quantum systems.
This helps to understand how to correctly quantify the ability to do work of any
given system output and is therefore an essential extension to the use of input
output theory for quantum thermodynamic purposes.
The rest of the thesis is structured as follows. In Sec. 1 we discuss the system
and model for our calculations. We look at the different theories and the rel-
evant equations and investigate the main observables in the steady state and
the transient regime. In Sec. 2 we research and compare different definitions
of the thermodynamic quantities power and heat for our system. We also ver-
ify the first law of thermodynamics for the relevant definitions. In Sec. 3 we
investigate the entropy production rate and compare the different rates for the
different definitions of power and heat. Here we verify the second law of ther-
modynamics for both definitions as well. Sec. 4 includes a conclusion of the
thesis and covers the outlook for future work and application of the different
definitions we discuss.
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1 System and Model

1.1 Open Quantum Systems

The system of interest consist of a cavity driven by a coherent source. This
may experimentally be achieved by using a laser driven cavity, where the cavity
consists of a semi-transparent and a non-transparent mirror and the laser drive
consist of coherent light with thermal noise. In the cavity a photon field can
build up through the drive, which can be viewed as the input field. The cavity
allows for dissipation as well as output in the form of coherent light, which can
be viewed as the output field.
We can quantify the dissipation to the environment (which we will usually call
the heat bath) through the coupling constant κ and the input and output fields

through the averages of the input and output fields ⟨b̂in⟩ and ⟨b̂out⟩.
Fig. 1 presents an illustration of how an open quantum system could be repre-
sented.

Input ⟨b̂in⟩

Output ⟨b̂out⟩

κ

Figure 1: Illustration of an open quantum system with input and output field,
dissipation and a cavity where a photon field can build up.

It is worth mentioning that the cavity will still contain photons even in the
absence of a coherent drive. This is due to the thermal equilibrium described
by the Bose-Einstein distribution

nB =
1

eϵ/kBT − 1
. (1)

Where ϵ is the energy, kB the Boltzmann constant and T the temperature.
This system can be described by a total Hamiltonian that consists of a system
Hamiltonian, bath Hamiltonian and interaction Hamiltonian

Ĥ = Ĥsys + Ĥbath + Ĥint = Ωâ†â+
∑
q

ωq b̂
†
q b̂q − i

∑
q

[fqâ
†b̂q − f∗

q âb̂
†
q] . (2)

The system Hamiltonian is a simple harmonic oscillator. The bath Hamiltonian
is described as a collection of non-interacting harmonic oscillators with frequency
ωq. The interaction Hamiltonian consists of a combination of the annihilation
operator and the creation operator of a bath mode, and its complex conjugate.
From this starting point, both the Markovian master equation and input output
theory can be derived.
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1.2 Markovian Master Equation

A widespread approach to describe these open quantum systems is given by
Markovian quantum master equations (QME). For all our calculations we will
set h̄ = 1. The general master equation (which can be found in Ref. [5]) for a
system consisting of a coherently driven cavity is given by

∂tρ̂ = −i[Ĥ0 + Ĥd(t), ρ̂] + κnBD[â†]ρ̂+ κ(nB + 1)D[â]ρ̂ . (3)

Where Ĥ0 = Ωâ†â is the free Hamiltonian of the system and

Ĥd(t) = i
√
κ
(
⟨b̂

†
in⟩eiωdtâ− ⟨b̂in⟩e−iωdtâ†

)
, (4)

is the drive Hamiltonian. Here ⟨b̂
†
in⟩ and ⟨b̂in⟩ are constants and are chosen such

that they match later results from input output theory. They can be viewed as
the expectation value of the input field in the rotating frame.
Furthermore, ρ̂ is the density matrix, κ and nB are constants that describe the
coupling to the heat bath and the Bose-Einstein distribution, respectively and
the dissipator operator is given by

D[â]ρ̂ = âρ̂â† − 1

2
{â†â, ρ̂}. (5)

To make calculations easier we will transform the QME into a rotating frame,

by means of the unitary operator Û = eiωdâ
†ât. This allows us to rotate with the

drive frequency, making the drive Hamiltonian time-independent. This results
in a QME for the rotating frame

∂tχ̂ =− i
[
∆â†â+ i

√
κ
(
⟨b̂

†
in⟩â− ⟨b̂in⟩â†

)
, χ̂
]
+ κnBD[â†]χ̂

+ κ(nB + 1)D[â]χ̂ ,
(6)

where χ̂ is the density matrix in the rotating frame and ∆ = Ω − ωd is the
detuning. The derivation of this equation can be found in Appendix A

1.3 Quantum Langevin Equations and Input Output The-
ory

A different approach to describing open quantum systems is through the quan-
tum Langevin equation and input output theory. The derivation of this theory
and the Langevin equation along the steps of [6] can be found in Appendix B.
The quantum Langevin equation for our system is given by

∂tâ = −i∆â− κ

2
â−

√
κ b̂in, (7)

and yields an equivalent approach to the master equation for the description
of our quantum systems. The output of the systems is calculated through the
input output relation

b̂out = b̂in +
√
κâ , (8)
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where the input and the output field are defined over the bath variables by
Eqs. (106) and (109) in Appendix B. Input output theory offers an elegant way
to determine the output of a quantum system, depending entirely on the form
of the input driving the system.

1.4 Observables

We can show that the QME and input output theory approaches are equivalent
and that from both approaches the same equations of motions for average values
can be obtained. From the master equation we can for example obtain the same
equation of motion for ⟨â⟩ as the one that can be derived from the Langevin
equation 7, by

∂t⟨â⟩ = Tr(â ˙̂χ) =
(
−i∆− κ

2

)
⟨â⟩ −

√
κ⟨b̂in⟩ . (9)

This also justifies our choice to use
√
κ⟨b̂in⟩ as the constant for the drive Hamil-

tonian of the master equation. Note that we have used the notation ˙̂χ = ∂tχ̂ in
Eq. 9, for convenience of notation. As our system is Gaussian (the Hamiltonian
consist only of terms of first or second order in the creation and annihilation
operators), it can be fully described by ⟨â⟩ and ⟨â†â⟩. We therefore also derive

∂t⟨â†â⟩ = −
√
κ
(
⟨b̂

†
in⟩⟨â⟩+ ⟨b̂in⟩⟨â†⟩

)
− κ⟨â†â⟩+ κnB . (10)

This equation of motion for ⟨â†â⟩ can be derived from input output theory as
well.

1.4.1 Steady State

To find the steady state solution of these differential equations, we simply set
them equal to zero, in which case we will have ∂t⟨â⟩ss = 0 and ∂t⟨â†â⟩ss = 0.
This results in steady state solutions of

⟨â⟩ss =
√
κ⟨b̂in⟩

(−i∆− κ
2 )

=

√
κ⟨b̂in⟩(i∆− κ

2 )

∆2 + (κ2 )
2

(11)

and

⟨â†â⟩ss = nB +
κ|⟨b̂in⟩|2

∆2 + (κ2 )
2
. (12)

Furthermore, we can also have a look at the variance ⟨⟨â†â⟩⟩ss, which is given
by

⟨⟨â†â⟩⟩ss = ⟨â†â⟩ss − ⟨â†⟩ss⟨â⟩ss = nB (13)

and only depends on the Bose-Einstein distribution.
As ⟨â⟩ss and ⟨â†â⟩ss completely describe our system in the steady state, we can
interpret the results in more detail and see in which domains these results are
valid.
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We will start with ⟨â†â⟩ss, which corresponds to the average of the photon
number operator N̂ = â†â. Therefore, ⟨â†â⟩ss describes how many photons
are present in our cavity in the steady state. We can see that the term nB

is independent of our drive and therefore is the occupation level of the cavity
without a drive, which is expected as it is the Bose-Einstein distribution.

The term κ|⟨b̂in⟩|2
∆2+(κ

2 )
2 depends on the frequency and the strength of the input drive

as well as the coupling to the heat bath. We see that this term is maximal
for ∆ = 0, indicating a drive frequency matching the frequency of the cavity.
Additionally, we see that the number of photons in the cavity becomes maximal
for κ = 0 as well. This would makes sense, as the dissipation of the system is
proportional to κ. However, it is very important to note that for κ = 0 our
equations are no longer valid, as we are not looking at a steady state anymore,
because the number of photons in the system would keep growing infinitely. This
can be seen in differential Eq. (10), which is not solvable for κ = 0. Setting
κ = 0, would therefore not correspond to a physical solution.
To illustrate the relation between the steady state photon number ⟨â†â⟩ss and

detuning ∆, the photon number N is displayed for different values of |⟨b̂in⟩|2
in Fig 2. The figure illustrates that the photon number has a clear maximum
at zero detuning and significantly depends on the drive strength. Note that
plotting |⟨â⟩ss|2 would result in the same graph, only shifted down by nB , as
Eq. (13) lets us express |⟨â⟩ss|2 as

|⟨â⟩ss|2 = ⟨â†â⟩ss − ⟨⟨â†â⟩⟩ss =
κ|⟨b̂in⟩|2

∆2 + (κ2 )
2
. (14)

To investigate ⟨â⟩ss, we look into the scenario of zero detuning ∆ = 0, so ⟨â⟩ss
can be expressed by a purely reel number. We find

⟨â⟩ss =
−2⟨b̂in⟩√

κ
(15)

The physical interpretation of ⟨â⟩ lies in the amplitude of the electric field E
and the magnetic field B of the electromagnetic modes inside our cavity and
we see that for our system this is linear in the input strength ⟨b̂in⟩ and inversly
proporional to

√
κ for the steady state. We are not only interested in the

expectation values in the rotating frame, equally important are the expectation
values in the lab frame, which is why we have calculated them (see Appendix
C) and found expressions of the averages in the lab frame through the averages
in the rotating frame

⟨â†â⟩LAB = ⟨â†â⟩, (16)

and
⟨â⟩LAB = e−iωdt⟨â⟩ . (17)

Note that the average photon number ⟨â†â⟩ stays invariant under this transfor-
mation, whereas the average ⟨â⟩ attains a time-dependent phase with frequency
ωd, due to the rotation. The expectation values of the output field are of further
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Figure 2: Steady state photon number as a function of detuning ⟨â†â⟩ss(∆) for

different values of the drive strength |⟨b̂in⟩|2 and constant temperature nB = 1.

interest to us. In Appendix D, we utilize the Langevin equation and transform
it to frequency space to solve for our desired quantities. For this calculation it
is necessary to specify our input field. In our case this is a coherent drive with
thermal noise, which can be represented by

b̂in(t) = ⟨b̂in⟩+ ξ̂(t) , (18)

where ξ̂(t) is the thermal noise, with moments

⟨ξ̂(t)⟩ = 0 (19)

and
⟨ξ̂†(t1)ξ̂(t2)⟩ = nBδ(t1 − t2) . (20)

The results we get from this approach are

⟨b̂out(t)⟩ = ⟨b̂in⟩
i∆− κ

2

i∆+ κ
2

(21)

and
⟨b̂

†
out(t) b̂out(t

′)⟩ = |⟨b̂in⟩|2 + nBδ(t− t′) = ⟨b̂
†
in(t) b̂in(t

′)⟩ . (22)

We find that the expectation value of the output field is is equal to the expec-
tation value of the input field with a phase shift depending on the detuning ∆.
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For a drive frequency that perfectly matches the cavity frequency, we find that
the average of the output field is the reflection of the input field, represented by
a phase shift of π.
We see that the output photon flux equals the input photon flux, indeed showing
that this is a result for steady state operation.

1.4.2 Transient Regime

Now that we have calculated all important quantities for steady state operation,
we will proceed to investigate ⟨â⟩ and ⟨â†â⟩ in the transient regime. We do so
by solving the differential Eqs. (9) and (10). We will solve the equations for an
initial vacuum state, which means ⟨â(t0)⟩ = ⟨â(t0)â(t0)†⟩ = 0. This results in
solutions of

⟨â(t)⟩ =
√
κ⟨b̂in⟩

−i∆− κ
2

(
1− e(−i∆−κ

2 )(t−t0)
)

(23)

and

⟨â†(t)â(t)⟩ = κ|⟨b̂in⟩|2

∆2 + κ
2
2

(
e−κ(t−t0) − 2e−

κ
2 (t−t0)cos(∆(t− t0)) + 1

)
. (24)

The derivation for these results can be found in Appendix E.
We can see that

|⟨â(t)⟩|2 = ⟨â(t)⟩⟨â†(t)⟩ = ⟨â†(t)â(t)⟩, (25)

which makes sense, as we set nB = 0 by applying an initial vacuum state. We
can plot ⟨â†(t)â(t)⟩ for multiple values of detuning in the transient regime and

normalize this to A = κ|⟨b̂in⟩|2
∆2+κ

2
2 . This is done in Figure 3.

Figure 3: Illustration of ⟨â†â⟩ in the transient regime for an initial vacuum state
with different amounts of detuning ∆

κ .
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2 Power, Heat and the First Law

The calculation of all the necessary observables allows us to look at the power
and heat current for our system. As mentioned before, there is no unambiguous
definition for power and heat. We will therefore investigate three different def-
initions. We will start with the standard definition of power and heat, as it is
usually derived from the master equation and will then extend this definition to
a modified version, which will be consistent with the master equations as well.
Lastly, we will analyze the definition as proposed by [4].

2.1 Standard Definition

In quantum thermodynamics the usual approach to quantify power and heat
current follows from the inner energy as demonstrated in [7]

U = Tr(Ĥρ̂) , (26)

from which we can decompose its partial time derivative as follows:

∂tU = Tr(Ḣρ̂)︸ ︷︷ ︸
P

+Tr(Ĥρ̇)︸ ︷︷ ︸
J

= Tr(Ḣdρ̂)︸ ︷︷ ︸
P

+Tr(Ĥ0ρ̇) + Tr(Ĥdρ̇)︸ ︷︷ ︸
J

. (27)

If we substitute our Hamiltonian and density matrix into Eq. (27), we find the
power

P = −
√
κωd

(
⟨b̂

†
in⟩⟨â⟩) + ⟨b̂in⟩⟨â†⟩

)
(28)

and heat current

J = Ωκ
(
nB − ⟨â†â⟩

)
+ i

κ

2

√
κ
(
⟨b̂

†
in⟩⟨â⟩ − ⟨b̂in⟩⟨â†⟩

)
. (29)

The full derivation can be found in Appendix F. We can see that the heat current
consists of all terms that are proportional to κ which come from the dissipator
operators and that the power comes from all terms proportional to

√
κ⟨b̂in⟩,

which comes from the drive Hamiltonian. We can now write the power and
heat as an expression of the input output operators by using the input output
relation

⟨â⟩ = ⟨b̂out⟩ − ⟨b̂in⟩√
κ

, (30)

which results in the power

P = −ωd

(
⟨b̂

†
in⟩⟨b̂out⟩ − ⟨b̂

†
in⟩⟨b̂in⟩+ ⟨b̂in⟩⟨b̂

†
out⟩ − ⟨b̂in⟩⟨b̂

†
in⟩
)

(31)

and heat current

J =− Ω
(
⟨b̂

†
out b̂out⟩ − ⟨b̂

†
out b̂in⟩ − ⟨b̂

†
in b̂out⟩+ ⟨b̂

†
in b̂in⟩ − κnB

)
+ i

κ

2

(
⟨b̂

†
in⟩⟨b̂out⟩ − ⟨b̂in⟩⟨b̂

†
out⟩

)
.

(32)
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2.2 Single Frequency Approach

We are mainly interested in the regime where the drive Hamiltonian only has
a small effect compared to the system Hamiltonian and where the detuning is
small, meaning Ω ≈ ωd. We therefore look into a situation where all photons in
the system have the energy ωd. The heat can then be understood as each photon
exchanged with the environment contributing with ωd. This consequently allows
us to propose a different definition for the inner energy, namely

U = Tr(ωdâ
†âρ̂) . (33)

As shown in [8], this approach is thermodynamically consistent if the energy in
the Bose-Einstein distribution is given by ϵ = ωd. We will also show that the
second law of thermodynamics holds for this definition in Sec. 3. This leads to
a definition of power

P = −
√
κωd

(
⟨b̂

†
in⟩⟨â⟩+ ⟨b̂in⟩⟨â†⟩

)
(34)

and heat current
J = ωdκ(nB − ⟨â†â⟩) . (35)

This derivation can be found in Appendix F as well. Note that the definition
of power is the exact same as the standard definition. The heat misses a term
compared with the standard definition, but this term will be small compared to
the rest in our approximation. We can write these definitions in terms of the
input output operators as well, giving us

P = −ωd

(
⟨b̂

†
in⟩⟨b̂out⟩ − ⟨b̂

†
in⟩⟨b̂in⟩+ ⟨b̂in⟩⟨b̂

†
out⟩ − ⟨b̂in⟩⟨b̂

†
in⟩
)

(36)

and

J = −ωd

(
⟨b̂

†
out b̂out⟩ − ⟨b̂

†
out b̂in⟩ − ⟨b̂

†
in b̂out⟩+ ⟨b̂

†
in b̂in⟩ − κnB

)
. (37)

These are the definitions we will be using as the power and heat current derived
from the master equations to compare them with the definition by [4].
An overview of both the single frequency approach and the standard definition
resulting from the master equation can be found in Table 1 and for steady state
power and heat current in Table 2

U Tr(Ĥρ̂) ωdTr(â
†âρ̂)

P −
√
κωd(⟨b̂

†
in⟩⟨â⟩) + ⟨b̂

†
in⟩⟨â†⟩) −

√
κωd(⟨b̂

†
in⟩⟨â⟩) + ⟨b̂

†
in⟩⟨â†⟩)

J Ωκ(nB − ⟨â†â⟩) + iκ
2

√
κ(⟨b̂

†
in⟩⟨â⟩ − ⟨b̂in⟩⟨â†⟩) ωdκ(nB − ⟨â†â⟩)

Table 1: Power and heat current for different inner energies.
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U Tr(Ĥρ̂) ωdTr(â
†âρ̂)

Pss ωd
κ2|⟨b̂in⟩|2
∆2+(κ

2 )
2 ωd

κ2|⟨b̂in⟩|2
∆2+(κ

2 )
2

Jss −ωd
κ2|⟨b̂in⟩|2
∆2+(κ

2 )
2 −ωd

κ2|⟨b̂in⟩|2
∆2+(κ

2 )
2

Table 2: Power and heat current for different inner energies.

2.3 More Energy Flows and the First Law

As we are looking into power and heat, which are different energy flows, it is
also interesting to see how the different energies of our Hamiltonians change.
We will therefore take a closer look at the equation of motion for ⟨Ĥbath⟩, as
defined in Eq. (2):

∂t⟨Ĥbath⟩ =
〈
i[Ĥ, Ĥbath]

〉
=

〈∑
q

ωq

(
fqâ

†b̂q + f∗
q âb̂

†
q

)〉
. (38)

We can do the same for the other two Hamiltonians and find

∂t⟨Ĥsys⟩ = −

〈
Ω
∑
q

[fqâ
†b̂q + f∗

q âb̂
†
q]

〉
(39)

and

∂t⟨Ĥint⟩ =

〈
∆
∑
q

[fqâ
†b̂q + f∗

q âb̂
†
q]

〉
, (40)

resulting in ∂t⟨Ĥ⟩ = ∂t⟨Ĥsys + Ĥbath + Ĥint⟩ = 0, which is expected because
of energy conservation. We can make the Markovian approximation again and
approximate these expressions in terms of input output operators as well to find

∂t⟨Ĥbath⟩ = ωd

(
⟨b̂

†
out b̂out⟩ − ⟨b̂

†
in b̂in⟩

)
, (41)

∂t⟨Ĥsys⟩ = −Ω
(
⟨b̂

†
out b̂out⟩ − ⟨b̂

†
in b̂in⟩

)
, (42)

∂t⟨Ĥbath⟩ = ∆
(
⟨b̂

†
out b̂out⟩ − ⟨b̂

†
in b̂in⟩

)
. (43)

The derivation of these energy flows and the calculation for input output theory
can be found in Appendix G.
We also want to look at the first law of thermodynamics, which says that the
total amount of energy is conserved or that energy cannot be created nor de-
stroyed. We can formulate this by adding the different energy flows to equal
zero. For any definition of power and heat, we should therefore find that they
obey

P + J = −∂t⟨Ĥbath⟩ , (44)

within the approximations of ωd ≈ Ω.
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2.4 Definition based on Input and Output

We will now look into the definition made by Ref. [4], where work is defined
as the coherent part of the output. As shown in this paper, a quantum battery
prepared in a coherent state is able to perform thermodynamic work. Hence,
work is defined as the coherent part of the output field and heat is defined as
the incoherent part of the output, which leads to the mathematical definition
of work as

P ′ = −ωd

(
⟨b̂

†
out⟩⟨b̂out⟩ − ⟨b̂

†
in⟩⟨b̂in⟩

)
. (45)

Heat current is consequently defined over energy conservation and may be ex-
pressed as

J ′ = −
(
∂t⟨Ĥbath⟩+ P ′

)
. (46)

This results in a heat current of

J ′ = −ωd

(
⟨⟨b̂

†
out b̂out⟩⟩ − ⟨⟨b̂

†
in b̂in⟩⟩

)
, (47)

where ⟨⟨ÂB̂⟩⟩ = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ is the covariance of ÂB̂.

2.5 Comparison

We are interested in the differences between the energy flows defined in terms
of the framework used for the QME and the energy flows defined over the in-
and output. Therefore, we can equate both definitions of power through

P ′ = P − ωdκ⟨â†⟩⟨â⟩ (48)

by using the input output relations. We can also compare both definitions of
heat current by using the relation

⟨⟨b̂
†
out b̂out⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩+ κ

[
⟨⟨â†â⟩⟩ − nB

]
, (49)

which is derived in Appendix H. From these relations, we can express J ′ as

J ′ = −ωdκ
[
⟨⟨â†â⟩⟩ − nB

]
, (50)

which allows us to compare J and J ′ through

J ′ = J + ωdκ⟨â†⟩⟨â⟩ . (51)

As J ′ is defined over energy conservation and P + J = P ′ + J ′, we see that the
first law (44) is automatically verified for P and J as well.
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2.6 Energy Flows in the Transient Regime

To get a better view of the dynamics of the system, we will investigate the
power, heat and bath energy in the transient regime, starting from the vacuum
state. For this we will use the solutions of ⟨â(t)⟩ and⟨â†â(t)⟩ for the transient
regime, as calculated in Sec. 1.4.2. We will start with the calculation for the
power.

2.6.1 Single Frequency Definition of Power P

We can use the definition of power in Eq. (34) and substitute our solutions for
⟨â(t)⟩ and ⟨â(t)†⟩, to find that we can express the power for an initial vacuum
state as

P = ωd
κ2|⟨b̂in⟩|2

∆2 + κ
2
2

(
1− e−

κ
2 (t−t0)(cos(∆(t− t0))− 2

∆

κ
sin(∆(t− t0)))

)
, (52)

which can be expressed in terms of the steady state power as

P = Pss

(
1− e−

κ
2 (t−t0)(cos(∆(t− t0))− 2

∆

κ
sin(∆(t− t0)))

)
. (53)

When driven on the resonance frequency (∆ = 0), this results in:

P∆=0 = 4ωd|⟨b̂in⟩|2
(
1− e−

κ
2 (t−t0)

)
(54)

and when we remove the drive we find the trivial relation P = 0. We can plot
P to see how the Power changes before settling to the steady state. This is
illustrated in Fig. 4a for different amounts of detuning ∆.

2.6.2 Definition of Power based on Output P’

We can also look at the definition of power based on the output P ′, from [4],
which can be written as:

P ′ = −ωd(⟨b̂
†
out⟩⟨b̂out⟩ − ⟨b̂

†
in⟩⟨b̂in⟩) = −ωd(

√
κ
(
⟨b̂

†
in⟩⟨â⟩+ ⟨b̂in⟩⟨â†⟩

)
+ κ⟨â†⟩⟨â⟩)

= P − ωdκ⟨â†⟩⟨â⟩
(55)

By substituting in ⟨â⟩ and ⟨â†⟩, we can express P ′ through

P ′ =ωd
κ2|⟨b̂in⟩|2

∆2 + κ
2
2

(
e−

κ
2 (t−t0)(cos(∆(t− t0))

+ 2
∆

κ
sin(∆(t− t0)))− e−κ(t−t0)

)
.

(56)
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We can also normalize this by the steady state power of the single frequency
definition. This results in

P ′ = Pss

(
e−

κ
2 (t−t0)(cos(∆(t− t0)) + 2

∆

κ
sin(∆(t− t0)))− e−κ(t−t0)

)
. (57)

Here we can also look at the resonance case (∆ = 0), resulting in

P ′
∆=0 = 4ωd|⟨b̂in⟩|2

(
e−

κ
2 (t−t0) − e−κ(t−t0)

)
. (58)

This power in the transient regime is plotted in Figure 4b. We can see that the
definition of the power by the single frequency approach tends to a non-zero
steady state after some initial oscillations. The power based on the definition
with input output theory, however, tends to a steady state of zero after some
similar initial oscillations.

2.6.3 Single Frequency Definition of Heat Current J

We can do the same for the heat current J = ωdκ(nB−⟨â†â⟩). With our solution
for ⟨â†â⟩, we get:

J = Jss
(
e−κ(t−t0) − 2e−

κ
2 (t−t0)cos(∆(t− t0))

)
+ 1
)

(59)

and when driven on the resonance frequency (∆ = 0), we get:

J∆=0 = −4ωd|⟨b̂in⟩|2
(
e−κ(t−t0) − 2e−

κ
2 (t−t0) + 1

)
. (60)

We see that without a drive (|⟨b̂in⟩|2 = 0), the Heat current disappears for an
intial vacuum state

Jb̂in=0 = 0. (61)

We can also plot J for different amounts of detuning ∆, which can be seen in
Figure 4c.

2.6.4 Definition of Heat Current based on Output J’

We can use the comparison between the two definitions of heat current to find

J ′ = J + ωdκ⟨â†⟩⟨â⟩ = 0. (62)

We find that this heat current vanishes for zero temperature (nB = 0), when
we start in the vacuum state.
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(a) Power(single frequency appr.) (b) Power (input output theory)

(c) Heat current (single frequency appr.)

Figure 4: Definitions of power and heat in the transient regime for an initial
vacuum state with different amounts of detuning ∆

κ . The power and heat cur-
rents tends to their respective steady state values.
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2.6.5 Plotting the Energy Flows for Driving at Resonance Frequency

Lastly, we are interested to see how the four plots for the energy flows look like,
when the cavity is driven at its resonance frequency (∆ = 0). This is can be
seen in Figure 5. The expressions for the energy flows can be found below

P∆=0 = 4ωd|⟨b̂in⟩|2
(
1− e−

κ
2 (t−t0)

)
, (63)

J∆=0 = −4ωd|⟨b̂in⟩|2
(
e−κ(t−t0) − 2e−

κ
2 (t−t0) + 1

)
, (64)

P ′
∆=0 = 4ωd|⟨b̂in⟩|2

(
e−

κ
2 (t−t0) − e−κ(t−t0)

)
, (65)

J ′
∆=0 = 0. (66)

Figure 5: Energy flows for the single frequency definitions (P and J) and the
definition based on the output (P ′ and J ′) in the transient regime for ∆ = 0
with an initial vacuum state.
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3 Entropy and the Second Law

To further investigate the differences between the definitions of power and heat
current through the master equations and the definition for input output theory,
we will look at the entropy production rate. This allows us to see whether the
definitions made by [4] are suited to form a consistent set of thermodynamic
variables including a consistent set of thermodynamic laws to describe systems
where the output is not completely discarded. As we have already shown that
the first law is verified for the definitions of power and heat and the definition
by [4] in Sec. 2.5, we will now look into the second law. In particular we will
investigate whether the second law of thermodynamics, which says that entropy
can never decrease, holds for the single frequency definitions of power and heat
and the definition by [4].

3.1 Entropy Production

We introduce the entropy production rate

∂tΣ =
−J

T
+ kB∂tSvN[ρ̂] , (67)

where J is our heat current, T is the temperature, kB is the Boltzmann constant,
SvN the von Neumann entropy and ρ̂ the density matrix of the system. In
Appendix J, we calculate the entropy production rate, according to [9], for a
Gaussian state with no squeezing, for our heat current J . We express T through
the Bose-Einstein distribution where we have used ϵ = ωd. We find

∂tΣ =kBκ
(
nB − ⟨⟨â†â⟩⟩

)(
ln

(
⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩

)
− ln

(
nB + 1

nB

))
+ kBκ⟨â†⟩⟨â⟩ln

(
nB + 1

nB

)
.

(68)

By closer investigation of this result we can see that the first term is bigger than
zero

kBκ
(
nB − ⟨⟨â†â⟩⟩

)(
ln

(
⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩

)
− ln

(
nB + 1

nB

))
≥ 0 , (69)

because when nB is bigger than ⟨⟨â†â⟩⟩, we find

ln

(
nB + 1

nB

)
≤ ln

(
⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩

)
, (70)

as ln
(
x+1
x

)
is a monotonically decreasing function for increasing x, and vice

versa. We also see that the second term is bigger than zero

kBκ⟨â†⟩⟨â⟩ln
(
nB + 1

nB

)
= kBκ|⟨â⟩|2ln

(
nB + 1

nB

)
≥ 0 . (71)
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This ultimately results in an entropy production that is greater or equal to zero

∂tΣ ≥ 0 (72)

and verifies the second law for our system with the single frequency definition
of power and heat current.

3.2 Entropy Production for J ′

Now that we have calculated the entropy production rate for J and have shown
that the second law of thermodynamics holds for this example, we will do the
same for J ′. This results in an entropy production rate of

∂tΣ
′ = kBκ

(
nB − ⟨⟨â†â⟩⟩

)(
ln

(
⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩

)
− ln

(
nB + 1

nB

))
, (73)

which is also calculated in Appendix J. Similar to the entropy production for J ,
we find that the second law (∂tΣ

′ ≥ 0) also holds for this definition of J ′.
Contrary to the definition of J in the master equation approach, not every-
thing that leaves the system is regarded as dissipation for the definition J ′ of
input output theory, but only the incoherent part of the output is regarded as
dissipation. This results in a smaller entropy production because there is less
dissipation.

3.3 Entropy Production of the Bath

Now that we have shown that the definition of power and heat current made
by [4] are suitable to be part of a set of thermodynamic quantities with a first
and second law for a simple harmonic oscillator, we want to understand how
general these result are. Therefore we will investigate the entropy production
of the bath to see if we can prove that the first and second law will hold for any
general system. We will do this by looking at the total change in entropy

∂tStot ≡ ∂tSvN[ρB ] + ∂tSvN[ρ] ≥ 0 , (74)

which will always be greater or equal to zero. This is because the von Neumann
entropy of the entire system stays constant

∂tSvN[ρtot] = ∂tSvN[ρB ] + ∂tSvN[ρ]− ∂tIMI[S;B] = 0 , (75)

because of unitary time evolution and the mutual information of the bath and
the system IMI[S;B] increase over time. Here, ρB is the density matrix of the
bath and the mutual information is defined by

IMI[S;B] = SvN[ρS] + SvN[ρB]− SvN[ρSB], (76)

Where ρS = ρ is the density matrix of the system and ρSB is the density matrix
of the systen combined with the bath.
We can therefore show that entropy production rate

∂tΣ
′ =

−J ′

T
+ kB∂tSvN[ρ̂] ≥ 0 , (77)
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is greater than or equal to zero, whenever

−J ′

T
≥ kB∂tSvN[ρB ]. (78)

Note that J ′ is defined over energy conservation and the definition of the power
and therefore is independent of the system.
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4 Conclusion and Outlook

In this thesis we have looked at how power and heat can be defined, moti-
vated by two theories regarding open quantum systems; the Markovian master
equation and input output theory. We investigated and quantified the differ-
ences between both theories for a simple harmonic oscillator. We started by the
widespread approach of the master equation and determined power and heat
for our system. From there, we wrote these quantities in terms of the central
objects of input output theory, which resulted in a definition of heat and work
for input output theory consistent with the master equations.
A different definition of heat and work for input output theory given by [4]
sparked motivation to investigate the discrepancy of these two definitions fur-
ther. We have shown that both the approach of the master equation and the
approach by [4], considering the coherent part of the output as work, can be
used to consistently describe the thermodynamics of the system. Furthermore,
we have shown that both approaches can be used in combination with a con-
sistent first and second law of thermodynamics, which we have defined over the
entropy production rate.
The definitions of this new approach by [4] and the associated thermodynamic
laws we found are therefore candidates in the construction of a new thermo-
dynamic framework describing the output of open quantum systems. Such a
framework would be used whenever the output of the system is of interest and
can be controlled. It would view part of the output as work, which is funda-
mentally different to the current approach of the Markovian master equation,
where everything leaving the system is regarded as lost.
A concrete example where this new framework could yield new and different re-
sults is in the TUR (Thermodynamic Uncertainty Relation) violation of 3 level

thermodynamic masers. Here the dimensionless quantity Q = σ
kb

⟨⟨P ⟩⟩
⟨P ⟩2 ≥ 2 is

bound from below by two. As shown in Ref. [10], the TUR is violated for 3
level thermodynamic lasers, when the system is treated semi-classically, but the
violation is no longer there when treated quantum mechanically. With our new
approach this violation may however be restored, when the system is treated
quantum mechanically.
It is important to note that we have only shown that these definitions and ther-
modynamic laws build a consistent framework for a simple harmonic oscillator
model and not for a general case. Showing that his is the case for a general sys-
tem, would be the next step towards a completely general framework to describe
the thermodynamics of the output of open quantum system.
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A Master Equation in the Rotating Frame

To solve the Master equation (3), reproduced here for convenience

∂tρ̂ = −i
[
Ĥ0 + Ĥd(t), ρ̂

]
+ κnBD[â†]ρ̂+ κ(nB + 1)D[â]ρ̂ , (79)

it is convenient to transform ρ̂ into a so called rotating frame by means of the

unitary operator Û = eiωdâ
†ât. This allows us to rotate with the drive frequency,

making the drive Hamiltonian time-independent. We can calculate the density
matrix in this rotating frame, which we define by χ̂ = Û†ρ̂Û . From this follows

˙̂χ =
˙̂
U†ρ̂Û + Û† ˙̂ρÛ + Û†ρ̂

˙̂
U . (80)

With a short calculation, we can express ˙̂χ through

˙̂χ =
˙̂
U†Û χ̂+ χ̂Û† ˙̂U + Û† ˙̂ρÛ =

[
˙̂
U†Û , χ̂

]
+ Û† ˙̂ρÛ . (81)

If we now substitute our Master Eq. (79) into our expression for ˙̂χ in Eq. (81),
we get a Master equation in the rotating frame

˙̂χ = −i[H̃, χ̂] + κnBD[Û†â†Û ]χ̂+ κ(nB + 1)D[Û†âÛ ]χ̂ , (82)

where H̃ = Û†Ĥ0Û + Û†Ĥd(t)Û + i
˙̂
U†Û takes the place of the Hamiltonian. We

can now evaluate the terms of this Hamiltonian explicitly, which starting with
the first term yields the following result

Û†Ĥ0Û = Ωeiωdâ
†âtâ†âe−iωdâ

†ât = Ωâ†â . (83)

Here we have used the identity [eÔ, Ô] = 0 to transform Ĥ0 into the rotating
frame. Note that â†â stays invariant under this transformation, as it is an
expression of the amount of photos in our system. For the drive Hamiltonian in
the rotating frame we find the expression

Û†Ĥd(t)Û = i
√
κ
(
⟨b̂

†
in⟩eiωdtÛ†âÛ − ⟨b̂in⟩e−iωdtÛ†â†Û

)
, (84)

where we can evaluate Û†âÛ and Û†â†Û to be e−iωdtâ and eiωdtâ† respectively.
This is done with the Hadamard lemma, resulting from the Baker-Campbell-
Hausdorff-Formula

eXY e−X =

∞∑
m=0

[X,Y ]m
m!

, (85)

with [X,Y ]m = [X, [X,Y ]m−1] and [X,Y ]0 = Y . With these identities we can
write the Master equation in the rotating frame (Eq. (82)) in an explicit form
for our Hamiltonians and we obtain

˙̂χ =− i
[
Ωâ†â+ i

√
κ
(
⟨b̂

†
in⟩â− ⟨b̂in⟩â†

)
− ωdâ

†â, χ̂
]

+ κnBD[â†]χ̂+ κ(nB + 1)D[â]χ̂ .
(86)
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This can be simplified by introducing the detuning ∆ := Ω−ωd, describing the
difference between the resonance frequency of the cavity and the drive frequency,
resulting in

˙̂χ =− i
[
∆â†â+ i

√
κ
(
⟨b̂

†
in⟩â− ⟨b̂in⟩â†

)
, χ̂
]
+ κnBD[â†]χ̂

+ κ(nB + 1)D[â]χ̂ ,
(87)

which is the final form we will be using for our calculations.

B Derivation of Input Output Theory

In this section we will show the derivation of the theory known as input output
theory. In this theory we calculate the output of our system through the interac-
tion of the system with the input it is given. We will derive this theory following
the same steps as [6]. We are dealing with an open system in a cavity, which is
coupled to a heat bath and is driven by an external source. Therefore we can
write the following Hamiltonian from Eq. (2), reproduced here for convenience:

Ĥ = Ĥsys + Ĥbath + Ĥint . (88)

In which the system’s Hamiltonian is not yet specified (but will only be propor-
tional to â and â†) and the bath- and interaction Hamiltonians:

Ĥbath =
∑
q

ωq b̂
†
q b̂q , (89)

Ĥint = −i
∑
q

[
fqâ

†b̂q − f∗
q âb̂

†
q

]
. (90)

Contrary to the calculations for the master equation, we will now be working
in the Heisenberg picture instead of the Schrödinger picture. Therefore our op-
erators will now become time-dependent. However, for convenience of notation
and readability, we will often drop the time argument of the operators. From
these Hamiltonians we can write down the Heisenberg equation of motion for
our bath variables

∂tb̂q = [Ĥ, b̂q] , (91)

which, by using the identities [b̂q, b̂
′†
q ] = δq,q′ and [b̂q, â] = [b̂q, â

†] = [b̂q, b̂
′
q] = 0,

we can evaluate to be

˙̂
bq = i

[
ωb̂†q b̂q + if∗

q âq b̂
†
q, b̂q

]
= −iωq b̂q + f∗

q â . (92)

This corresponds to a differential equation of a driven harmonic oscillator, which
can be solved by

b̂q(t) = e−iωq(t−t0)b̂q(t0) +

∫ t

t0

e−iωq(t−τ)f∗
q â(τ) dτ . (93)
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The first term of this expression represents the free evolution of b̂q(t), whereas
the second term expresses the waves radiated from the cavity into the bath.
If we now do the same for â, we get find that its equation of motion is given by

∂tâ = i[Ĥ, â] = i[Ĥsys, â] +
∑
q

[
fqâ

†b̂q − f∗
q âb̂

†
q, â
]

. (94)

By using the identities [â, â†] = 1 and [b̂q, â] = [b̂†q, â] = 0, we can simplify this
again, resulting in

∂tâ = i[Ĥsys, â]−
∑
q

fq b̂q . (95)

To further evaluate this result, we can use Eq. (93) to express
∑

q fq b̂q explicitly.
We find the expression∑

q

fq b̂q =
∑
q

fqe
−iωq(t−t0)b̂q(t0) +

∑
q

|fq|2
∫ t

t0

e−iωq(t−τ)â(τ) dτ . (96)

This can be written as∑
q

fq b̂q =
∑
q

fqe
−iωq(t−t0)b̂q(t0)

+
∑
q

|fq|2
∫ t

t0

e−i(ωq−ωc)(t−τ)[eiωc(τ−t)â(τ)] dτ ,

(97)

in which we assume the term [eiωc(τ−t)â(τ)] to be a slowly varying function of τ ,
as â would evolve with frequency ωc if it were a single harmonic oscillator. This
allows for the Markov approximation, allowing only bath modes with frequencies
close to ωc to interact with the bath.
We can now define κ as

κ(ωc) = 2π
∑
q

|fq|2δ(ωc − ωq) . (98)

From this definition follows the relation:∫ ∞

−∞

1

2π
κ(ωc + ν)e−iν(t−τ) dν =

∑
q

|fq|2 e−i(ωq−ωc)(t−τ) . (99)

We can now make the Markov approximation κ(ν) = κ, in which we assume
that κ is independent of the frequency, so that we can express Eq. (99) as∫ ∞

−∞

1

2π
κ(ωc + ν)e−iν(t−τ) dν = κδ(t− τ) . (100)

We can now set the right sides of Eq, (99) and (100) equal, which gives us the
relation ∑

q

|fq|2 e−i(ωq−ωc)(t−τ) = κδ(t− τ) . (101)
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We can substitute this expression back in Eq. (97), to find an expression for∑
q fq b̂q:∑
q

fq b̂q =
∑
q

fqe
−iωq(t−t0)b̂q(t0) +

∑
q

∫ t

t0

κδ(t− τ)[eiωc(τ−t)â](τ) dτ . (102)

Here we can evaluate
∫ t

t0
κδ(t− τ)[eiωc(τ−t)â](τ) dτ to be κ

2 â, using the identity∫ t

t0

δ(t− τ) dτ =
1

2
, (103)

resulting in the differential equation for a:

∂tâ = i[Ĥsys, â]−
κ

2
â−

∑
q

fqe
−iωq(t−t0)b̂q(t0) , (104)

where, the κ
2 â term represents the damping of the cavity. A further approxi-

mation to simplify calculations can be made by defining f as f :=
√
|fq|2 and

the density of states as ρ =
∑

q δ(ωc − ωq) . This leads to κ being expressed
through

κ = 2π|f |2ρ . (105)

By making these approximations, we can now evaluate the equation of motion
for â further. In particular, we can define the ’input mode’ b̂in, from the third
term in Eq. (104) as

b̂in =
1√
2πρ

∑
q

e−iωq(t−t0)b̂q(t0) . (106)

This input field can be interpreted as a field moving towards the cavity. This
field is evolving freely under the bath Hamiltonian and is the driving term of
our cavity. With this we can rewrite Eq. (104) as:

∂tâ = i[Ĥsys, â]−
κ

2
â−

√
κ b̂in(t) . (107)

We now have an input mode coming from the bath interacting with the cavity.
Additionally, we can obtain a differential equation for the cavity modes through
this input mode and the system Hamiltonian. This interaction yields an outgo-
ing field, which we will describe as b̂out. Similar to b̂in, this field will emerge in
the solution of Eq. (92) as well, with the only difference that this solution to
the equation is now described by the final conditions, rather than the initial:

b̂q(t) = e−iωq(t−t1)b̂q(t0)−
∫ t1

t

e−iωq(t−τ)f∗
q â(τ) dτ . (108)

By following the same steps as above, this gives us the definition of b̂out as

b̂out =
1√
2πρ

∑
q

e−iωq(t−t1)b̂q(t1) . (109)
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Similar to b̂in, we can also write Eq. (104) in terms of b̂out, instead of b̂in, which
would result in

∂tâ = i[Ĥsys, â] +
κ

2
â−

√
κ b̂out . (110)

Comparing Eq. (110) with Eq. (107), gives us the interesting insight that

b̂out = b̂in +
√
κâ . (111)

This is a key insight to input output theory, as it lets us determine the outgoing
field, depending only on the incoming field and the operator â, which can be
completely determined by the system Hamiltonian and again the incoming field.

C Expectation Values in the Lab Frame

As we are mainly interested in our quantities in the LAB frame, but solve our
problem in the rotating frame, we provide the expectation values for â and â†â
in the lab frame and express them in term of the expectation values for â and
â†â in the rotating frame. We start with our expression for ⟨â†â⟩ in the lab
frame

⟨â†â⟩LAB = Tr(â†âρ̂) = Tr(â†âÛ χ̂Û†) (112)

and use the cyclic nature of the trace and the relation Û†â†âÛ = â†â to find

⟨â†â⟩LAB = ⟨â†â⟩ . (113)

We see that ⟨â†â⟩ is independent of the frame, as it corresponds to the photon
number.
We will now do the same for ⟨â⟩ and find that ⟨â⟩ in the lab frame is expressed
as

⟨â⟩LAB = Tr(âρ̂) = Tr(âÛ χ̂Û†) , (114)

which results in
⟨â⟩LAB = e−iωdt⟨â⟩ . (115)

Where we have once again used the cyclic nature of the trace and the relation
Û†âÛ = e−iωdtâ. To find the long-time solutions for ⟨â†â⟩ and ⟨â⟩ in the lab
frame, we just substitute the steady state solutions into Eqs. (113) and (115)
to find the relations

⟨â†â⟩LAB,ss = ⟨â†â⟩ss (116)

and
⟨â⟩LAB,ss = e−iωdt⟨âss⟩ . (117)
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D Fourier Transforms

In this section of the appendix, we will derive Eq. (21) and (22). To perform
calculations on our system we need an explicit input. We are interested in a
laser driven cavity and will therefore investigate the properties and expectation
values of our operators for an input field corresponding to a coherent drive with
thermal noise, which can be given defined by

b̂in(t) = ⟨b̂in⟩+ ξ̂(t) , (118)

where ξ̂(t) is the thermal noise, with moments

⟨ξ̂(t)⟩ = 0 (119)

and
⟨ξ̂†(t1)ξ̂(t2)⟩ = nBδ(t1 − t2). (120)

This results in ⟨b̂in(t)⟩ = ⟨b̂in⟩ and ⟨b̂
†
in(t) b̂in(t

′)⟩ = |⟨b̂in⟩|2 + nBδ(t− t′).

D.1 Evaluating ⟨â(t)⟩
If we Fourier transform Eq. (7), we get

â[ω] =
−
√
κ

i(∆− ω) + κ
2

b̂in[ω] . (121)

If we now substitute our input field from Eq. (118), this gives us

b̂in[ω] =

∫ ∞

−∞
[⟨b̂in⟩+ ξ̂(t)]eiωt dt = ⟨b̂in⟩δ(ω) +

∫ ∞

−∞
ξ̂(t)eiωt dt . (122)

For convenience we define

ξ[ω] =

∫ ∞

−∞
ξ̂(t)eiωt dt (123)

and notice that this has moments ⟨ξ[ω]⟩ = 0 and

⟨ξ[ω′]ξ[ω]⟩ =
∫ ∞

−∞

∫ ∞

−∞
nBδ(t

′ − t)eiωteiω
′t′ dt dt′ = nBδ(ω + ω′) . (124)

We can now use Eq. (121), which leads us to

â[ω] =
−
√
κ

i(∆− ω) + κ
2

(
⟨b̂in⟩δ(ω) + ξ[ω]

)
(125)

and
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â(t) =

∫ ∞

−∞

(
−
√
κ

i(∆− ω) + κ
2

(
⟨b̂in⟩δ(ω) + ξ[ω]

))
e−iωt dω . (126)

From this follows:

⟨â(t)⟩ = −
√
κ⟨b̂in⟩

i∆+ κ
2

, (127)

which agrees with the approach of the master equations as can be seen in Eq.
(11).

D.2 Evaluating ⟨b̂out(t)⟩
From Eqs. (111) and (121), follows:

b̂out[ω] =
i(∆− ω)− κ

2

i(∆− ω) + κ
2

b̂in[ω] . (128)

We can use b̂in[ω] = ⟨b̂in⟩δ(ω) + ξ[ω] again to find:

b̂out(t) = ⟨b̂in⟩
i∆− κ

2

i∆+ κ
2

+

∫ ∞

−∞

i(∆− ω)− κ
2

i(∆− ω) + κ
2

ξ[ω] . (129)

This results in

⟨b̂out(t)⟩ = ⟨b̂in⟩
i∆− κ

2

i∆+ κ
2

. (130)

D.3 Evaluating ⟨â†(t′)â(t)⟩
By using the same convention of f†[ω] = (f [−ω])†as in [6], we can now express
Hermitian conjugate terms to find

â†[ω′]â[ω] =
−
√
κ

i(∆ + ω′) + κ
2

−
√
κ

−i(∆− ω) + κ
2

b̂
†
in[ω

′] b̂in[ω] , (131)

which with our input, can be written as

â†[ω′]â[ω] =

−
√
κ

i(∆ + ω′) + κ
2

−
√
κ

−i(∆− ω) + κ
2

(
⟨b̂

†
in⟩δ(−ω′) + ξ†[−ω′]

)(
⟨b̂in⟩δ(ω) + ξ[ω]

)
(132)
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and equals

â†[ω′]â[ω] =

−
√
κ

i(∆ + ω′) + κ
2

−
√
κ

−i(∆− ω) + κ
2

(
|⟨b̂in⟩|2δ(−ω′)δ(ω) + ξ†[−ω′]⟨b̂in⟩δ(ω)

+ ξ[ω]⟨b̂
†
in⟩δ(−ω′) + ξ†[−ω′]ξ[ω]

)
.

(133)

By transforming back to time-space we find

â†(t)â(t′) =∫ ∞

−∞

∫ ∞

−∞

−
√
κ

i(∆ + ω′) + κ
2

−
√
κ

−i(∆− ω) + κ
2

(
|⟨b̂in⟩|2δ(−ω′)δ(ω)

+ ξ†[−ω′]⟨b̂in⟩δ(ω) + ξ[ω]⟨b̂
†
in⟩δ(−ω′) + ξ†[−ω′]ξ[ω]

)
e−iω′t′e−iωt dω′ dω ,

(134)

resulting in

⟨â†(t)â(t′)⟩ = κ|⟨b̂in⟩|2

∆2 + (κ2 )
2
+∫ ∞

−∞

∫ ∞

−∞

−
√
κ

i(∆ + ω′) + κ
2

−
√
κ

−i(∆− ω) + κ
2

nBδ(ω
′ + ω)e−iω′t′e−iωt dω′ dω

=
κ|⟨b̂in⟩|2

∆2 + (κ2 )
2
+

∫ ∞

−∞

κnB

(∆− ω)2 + (κ2 )
2
eiω(t′−t) dω

=
κ|⟨b̂in⟩|2

∆2 + (κ2 )
2
+ nBe

(−κ
2 +i∆)|t′−t| .

(135)

For t = t′, we get ⟨â†(t)â(t′)⟩ = κ|⟨b̂in⟩|2
∆2+(κ

2 )
2 + nB . Where we have used∫ ∞

−∞

κnB

(∆− ω)2 + (κ2 )
2
eiω(t′−t) dω

= nB

∫ ∞

−∞

2κ
2

(ω)2 + (κ2 )
2
ei(−ω+∆)(t′−t) dω

= nBe
(κ
2 +∆)|t′−t| .

(136)

D.4 Evaluating ⟨b̂
†
out(t) b̂out(t

′)⟩
Lastly, we look at

b̂
†
out[ω

′] b̂out[ω] =
−i(∆ + ω′)− κ

2

−i(∆ + ω′) + κ
2

i(∆− ω)− κ
2

i(∆− ω) + κ
2

b̂
†
in[ω] b̂in[ω] . (137)
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With our input, this leads to

b̂
†
out(t) b̂out(t

′) =∫ ∞

−∞

∫ ∞

−∞

−i(∆ + ω′)− κ
2

−i(∆ + ω′) + κ
2

i(∆− ω)− κ
2

i(∆− ω) + κ
2

(
|⟨b̂in⟩|2δ(−ω′)δ(ω)

+ ξ†[−ω′]⟨b̂in⟩δ(ω) + ξ[ω]⟨b̂
†
in⟩δ(−ω′) + ξ†[−ω′]ξ[ω]

)
e−iω′t′e−iωt dω′ dω ,

(138)

and can be simplified to

⟨b̂
†
out(t) b̂out(t

′)⟩ = |⟨b̂in⟩|2+∫ ∞

−∞

∫ ∞

−∞

−i(∆ + ω′)− κ
2

−i(∆ + ω′) + κ
2

i(∆− ω)− κ
2

i(∆− ω) + κ
2

nBδ(ω + ω′)e−iω′t′e−iωt dω′ dω ,

(139)

which results in

⟨b̂
†
out(t) b̂out(t

′)⟩ = |⟨b̂in⟩|2 + nBδ(t− t′) = ⟨b̂
†
in(t) b̂in(t)⟩ . (140)

We see that the amount of photons entering the cavity equals the amount of
photons leaving the cavity, implying we are operating the cavity in a steady
state with a coherent input drive.

E Transient Regime

To gain a deeper understanding of what happens when an open cavity is driven
by a coherent laser, we will explicitly solve the differential Eqs. (9) and (10)
found in Section 1.4 for ⟨â(t)⟩ and ⟨â(t)†â(t)⟩. This will enable us to obtain the
necessary expressions for evaluating the energy flows explicitly and to investigate
them in the transient regime. The differential Eqs. (141) and (142) for ⟨â(t)⟩
and ⟨â(t)†â(t)⟩ are

∂t⟨â⟩ = (−i∆− κ

2
)⟨â⟩ −

√
κ⟨b̂in⟩ (141)

and

∂t⟨â†â⟩ = −
√
κ
(
⟨b̂

†
in⟩â+ ⟨b̂in⟩â†

)
− κ⟨â†â⟩+ κnB . (142)

For Eq. (141) we find

⟨â(t)⟩ = c1e
(−i∆−κ

2 )t +

√
κ⟨b̂in⟩

−i∆− κ
2

, (143)

where we can fix the initial state to be the vacuum state; ⟨â(t0)⟩ = 0, by setting

c1 = −
√
κ⟨b̂in⟩

−i∆−κ
2
e−(−i∆−κ

2 )t0 . This gives us
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⟨â(t)⟩ =
√
κ⟨b̂in⟩

−i∆− κ
2

(
1− e(−i∆−κ

2 )(t−t0)
)

. (144)

We can verify that ⟨â(t)⟩ will tend to the steady state by

lim
t→∞

⟨â(t)⟩ = ⟨â⟩ss . (145)

We can now use this result to substitute ⟨â(t)⟩ into Eq. (141), which gives us

∂t⟨â†â⟩ =− κ|⟨b̂in⟩|2
(

1

−i∆− κ
2

(1− e(−i∆−κ
2 )(t−t0))

+
1

i∆− κ
2

(1− e(i∆−κ
2 )(t−t0))

)
− κ⟨â†â⟩+ κnB .

(146)

This equation can be simplified to

∂t⟨â†â⟩ =− κ|⟨b̂in⟩|2

∆2 + κ
2
2

(
− κ+ e−

κ
2 (t−t0)(−2∆sin(∆(t− t0))

+ κcos(∆(t− t0)))

)
− κ⟨â†â⟩+ κnB

(147)

and can be solved by

⟨â†(t)â(t)⟩ =e−κt(c2 +
κ|⟨b̂in⟩|2

∆2 + κ
2
2

∫ t

t0

κ+
nB(∆

2 + κ
2
2)

|⟨b̂in⟩|2
eκx

− e−
κ
2 (−x−t0)(2∆sin(∆(x− t0)) + κcos(∆(x− t0))) dx) ,

(148)

which equals

⟨â†(t)â(t)⟩ = c2e
−κt +

2κ

(∆2 + κ
2
2)
|⟨b̂in⟩|2

(
eκ(t0−t) − e

κ
2 (t0−t)cos(∆(t− t0))

)
+

(
κ|⟨b̂in⟩|2

∆2 + κ
2
2 + nB

)
(1− eκ(t0−t)) .

(149)

Now we can fix the initial state to be the vacuum state again by setting c2 = 0:

⟨â†(t0)â(t0)⟩ = c2e
−κt0 = 0 , (150)

resulting in the final equation

31



⟨â†(t)â(t)⟩ =2κ|⟨b̂in⟩|2

∆2 + κ
2
2

(
e−κ(t−t0) − e−

κ
2 (t−t0)cos(∆(t− t0))

)
+ (

κ|⟨b̂in⟩|2

∆2 + κ
2
2 + nB)(1− e−κ(t−t0)) .

(151)

It can again be verified that this tends to the steady state by taking the limit
of t to inifinty

lim
t→∞

⟨â†(t)â(t)⟩ = ⟨â†â⟩ss . (152)

For nB = 0, this results in

⟨â†(t)â(t)⟩ = 2κ|⟨b̂in⟩|2

∆2 + κ
2
2

(
e−κ(t−t0) − 2e−

κ
2 (t−t0)cos(∆(t− t0)) + 1

)
. (153)

F Power and Heat

In this section of the appendix we derive the definitions of power and heat
motivated by the master equation. We can do this by looking at the inner
energy U which we can define as

U = Tr(Ĥρ̂) . (154)

From the inner energy, power and heat current are usually derived by its time-
derivative in the following way:

∂tU = Tr(Ḣρ̂)︸ ︷︷ ︸
P

+Tr(Ĥρ̇)︸ ︷︷ ︸
J

= Tr(Ḣdρ̂)︸ ︷︷ ︸
P

+Tr(Ĥ0ρ̇) + Tr(Ĥdρ̇)︸ ︷︷ ︸
J

, (155)

where the power is obtained from the time derivative of the Hamiltonian and
the heat current is obtained from the time derivative of the density matrix. We
can evaluate both terms, which results in

Tr(Ḣdρ̂) = −
√
κωdTr

(
⟨b̂

†
in⟩eiωdtâ+ ⟨b̂in⟩e−iωdtâ†)ρ

)
= −

√
κωd

(
⟨b̂

†
in⟩⟨â⟩) + ⟨b̂in⟩⟨â†⟩

) (156)

and

Tr(Ĥρ̇) = Tr

(
(Ωâ†â+ i

√
κ(⟨b̂

†
in⟩eiωdtâ− ⟨b̂in⟩e−iωdtâ†))ρ̇

)
. (157)

32



To evaluate Eq. (157), we can use the following three expressions:

Tr(â†âρ̇) = −
√
κ
(
⟨b̂

†
in⟩⟨â⟩+ ⟨b̂in⟩⟨â†⟩

)
+ κnB − κnB⟨â†â⟩ , (158)

Tr(âρ̇) = −iΩ⟨â⟩LAB −
√
κ⟨b̂in⟩e−iωdt +

1

2
κ⟨â⟩LAB , (159)

Tr(â†ρ̇) = iΩ⟨â†⟩LAB −
√
κ⟨b̂

†
in⟩eiωdt +

1

2
κ⟨â†⟩LAB . (160)

With these expressions we can write Eq. (157) as

Tr(Ĥρ̇) = κΩ(nB − ⟨â†â⟩) + 1

2
i
√
κκ
(
⟨b̂

†
in⟩⟨â⟩ − ⟨b̂in⟩⟨â†⟩

)
. (161)

From this follows that the power and the heat current are defined as follows

P = −
√
κωd

(
⟨b̂

†
in⟩⟨â⟩

)
+ ⟨b̂in⟩⟨â†⟩) , (162)

J = Ωκ(nB − ⟨â†â⟩) + i
κ

2

√
κ
(
⟨b̂

†
in⟩⟨â⟩ − ⟨b̂in⟩⟨â†⟩

)
. (163)

This result comes from our definition of the inner energy as U = Tr(Ĥρ̂), how-
ever we are mainly interested in a situation where the drive Hamiltonian has a
small influence compared to Ĥ0. We can therefore also look into the case where
we define our inner energy as U = Tr(ωdâ

†âρ̂).

U = ωdTr(â
†âρ̂) = ωd⟨â†â⟩LAB (164)

and therefore leads to:

∂tU = Tr(Ĥ0
˙̂ρ) = ωdTr(â

†â ˙̂ρ) = ωd∂t⟨â†â⟩LAB = ωd∂t⟨â†â⟩ . (165)

With Eq. (10) we can now write this as

∂tU = ωd

(
−
√
κ
(
⟨b̂

†
in⟩⟨â⟩+ ⟨b̂in⟩⟨â†⟩

)
− κ⟨â†â⟩+ κnB

)
. (166)

Because ∂tU = P + J , where P is the power and J is the heat current, we can
define the power and heat current from Eq. (27). As κ is our coupling constant
to the bath, we will define J from the terms proportional to κ, resulting in

J = ωdκ(nB − ⟨â†â⟩). (167)

This leaves us with a definition of the power

P = −
√
κωd(⟨b̂

†
in⟩⟨â⟩+ ⟨b̂in⟩⟨â†⟩), (168)

which is the exact same result as we found in Eq. (162).
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G Calculation for Energy Flows

In this section of the appendix, we will show the calculation to derive Eq. (38)
- (43).

G.1 Evaluating ∂t⟨Ĥbath⟩
As we are looking into power and heat, which are different energy flows, it is
also interesting to see how the different energies of our Hamiltonians change.
We will therefore take a closer look at the equation of motion for ⟨Ĥbath⟩

∂t⟨Ĥbath⟩ = ⟨i[Ĥ, Ĥbath]⟩ = ⟨i[Ĥint, Ĥbath]⟩ . (169)

Substituting the Hamiltonians in Eq. (169) gives us

∂t⟨Ĥbath⟩ =

〈 [∑
q′

fq′ â
†b̂q′ − f∗

q′ âb̂
†
q′ ,
∑
q

ωq b̂
†
q b̂q

]〉
, (170)

which can be simplified to

∂t⟨Ĥbath⟩ =

〈∑
q

ωq

[
fqâ

†b̂q − f∗
q âb̂

†
q, b̂

†
q b̂q

]〉

=

〈∑
q

ωq

(
fqâ

†b̂q + f∗
q âb̂

†
q

)〉
.

(171)

G.2 Evaluating ∂t⟨Ĥint⟩
We will also take a closer look at the equation of motion for ⟨Ĥint⟩, which is
given by

∂t⟨Ĥint⟩ = ⟨i[Ĥbath + Ĥsys, Ĥint]⟩ = ⟨i[Ĥsys, Ĥint]⟩ − ∂t⟨Ĥbath⟩ , (172)

where we can see that

⟨i[Ĥsys, Ĥint]⟩ =

〈
Ω
∑
q

[
fqâ

†b̂q + f∗
q âb̂

†
q

]〉
, (173)

which just equals Ω
ωd

∂t⟨Ĥbath⟩, resulting in a final equation of motion for ⟨Ĥint⟩,
which is very similar to Eq. (171)

∂t⟨Ĥint⟩ =

〈
∆
∑
q

[fqâ
†b̂q + f∗

q âb̂
†
q]

〉
. (174)
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G.3 Evaluating ∂t⟨Ĥsys⟩
Lastly, we will also take a closer look at the equation of motion for ⟨Ĥsys⟩, which
is given by

∂t⟨Ĥsys⟩ = ⟨i[Ĥint, Ĥsys]⟩ = −

〈
Ω
∑
q

[fqâ
†b̂q + f∗

q âb̂
†
q]

〉
, (175)

and makes sure that ∂t⟨Ĥ⟩ = 0:

G.4 Expressing ∂t⟨Ĥsys⟩, ∂t⟨Ĥint⟩ and ∂t⟨Ĥbath⟩
We have found that the equations of motion for all three Hamiltonians are very
similar. Namely;

∂t⟨Ĥsys⟩ = −

〈
Ω
∑
q

[
fqâ

†b̂q + f∗
q âb̂

†
q

]〉
, (176)

∂t⟨Ĥint⟩ =

〈
∆
∑
q

[
fqâ

†b̂q + f∗
q âb̂

†
q

]〉
, (177)

∂t⟨Ĥbath⟩ =

〈
ωd

∑
q

[
fqâ

†b̂q + f∗
q âb̂

†
q

]〉
, (178)

where we have made the assumption that ωq ≈ ωd. To further evaluate these

expressions, we need to express
∑

q

[
fq b̂q(t)

]
in terms of the operators we are

working with; b̂in(t), b̂out(t) and â(t). By substituting the explicit expression
for our bath variables from Eq. (92), we find

∑
q

[
b̂q(t)

]
=
∑
q

[
e−iωq(t−t0)b̂q(t0) +

∫ t

t0

e−iωq(t−τ)f∗
q â(τ) dτ

]
. (179)

We see that the first term in this expression resembles the input field, so we can
use Eq. (106), to simplify

∑
q

[
b̂q(t)

]
=

√
κ

f
b̂in(t) +

∑
q

[ ∫ t

t0

e−iωq(t−τ)f∗
q â(τ) dτ

]
. (180)

This results in

∑
q

[
fq b̂q(t)

]
=

√
κ b̂in(t) +

∑
q

|fq|2
∫ t

t0

e−iωq(t−τ)â(τ) dτ . (181)

Now we can use Eq. (101) again to find
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∑
q

[
fq b̂q(t)

]
=

√
κ b̂in(t) +

∫ t

t0

κδ(t− τ)â(τ) dτ, (182)

which, with Eq, (103) simplifies even further to∑
q

[
fq b̂q(t)

]
=

√
κ b̂in(t) +

κ

2
â(t) . (183)

Now that we have found an explicit expression for
∑

q

[
fq b̂q(t)

]
, we can substi-

tute this back into ⟨
∑

q[fqâ
†(t)b̂q(t) + f∗

q â(t)b̂
†
q(t)]⟩, and find

〈∑
q

[fqâ
†b̂q + f∗

q âb̂
†
q]

〉
=

√
κ
(
⟨b̂

†
in â⟩+ ⟨â† b̂in⟩

)
+ κ⟨â†â⟩ . (184)

Here we can use the input output-relation from Eq. (30) again and write the
right hand side of this equation in terms of the input and output field to find:

∂t⟨Ĥbath⟩ = ωd

(
⟨b̂

†
in b̂out⟩ − ⟨b̂

†
in b̂in⟩

+⟨b̂
†
out b̂in⟩ − ⟨b̂

†
in b̂in⟩+⟨b̂

†
out b̂out⟩ − ⟨b̂

†
out b̂in⟩ − ⟨b̂

†
in b̂out⟩+ ⟨b̂

†
in b̂in⟩

)
= ωd

(
⟨b̂

†
out b̂out⟩ − ⟨b̂

†
in b̂in⟩

)
.

(185)

H Evaluating Covariances of the Output

To evaluate the expressions ⟨⟨b̂
†
out b̂in⟩⟩, ⟨⟨b̂

†
in b̂out⟩⟩ and ⟨⟨b̂

†
out b̂out⟩⟩, we use the

input output relation

b̂out = b̂in +
√
κâ (186)

and substitute this in to find

⟨⟨b̂
†
out b̂in⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩+

√
κ⟨⟨â† b̂in⟩⟩ , (187)

⟨⟨b̂
†
in b̂out⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩+

√
κ⟨⟨b̂

†
in â⟩⟩ (188)

and

⟨⟨b̂
†
out b̂out⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩+

√
κ(⟨⟨b̂

†
in â⟩⟩+ ⟨⟨â† b̂in⟩⟩) + κ⟨⟨â†â⟩⟩ . (189)
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Now we can evaluate ⟨⟨b̂
†
in â⟩⟩ and ⟨⟨â† b̂in⟩⟩ according to [11], where we can find

⟨⟨b̂
†
in â⟩⟩ = ⟨⟨â† b̂in⟩⟩ = −

√
κ
nB

2
. (190)

Therefore, we can express

⟨⟨b̂
†
out b̂in⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩ −

κ

2
nB , (191)

⟨⟨b̂
†
in b̂out⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩ −

κ

2
nB , (192)

which in turn gives us the covariance of the output

⟨⟨b̂
†
out b̂out⟩⟩ = ⟨⟨b̂

†
in b̂in⟩⟩+ κ

[
⟨⟨â†â⟩⟩ − nB

]
. (193)

I Input Output Theory in the Rotating Frame

In this part of the appendix we show how input output theory can be applied for
calculations in the rotating frame. To switch into the rotating frame in Input

Output Theory, we use the unitary operator U = eiωdtâ
†â+

∑
q iωdtb̂

†
q b̂q . We can

apply the same transformation as we did in for the Master equation, resulting
in

ˆ̃H = Û†ĤsysÛ + Û†ĤbathÛ + Û†ĤintÛ + i
˙̂
U†Û . (194)

This results in:
ˆ̃H = Ĥsys + Ĥbath + Û†ĤintÛ − ωdâ

†â . (195)

Which means that Ĥsys = Ωâ†â, will become ∆â†â. And we find Û†ĤintÛ =

−i
∑

q[e
iωdt−ωqfqâ

†b̂q − e−iωdt+ωqf∗
q âb̂

†
q] . This results in

b̂q,rot(t) = e−iωq(t−t0)b̂q(t0) +

∫ t

t0

e(−iωdt+ωq)e−iωq(t−τ)f∗
q â(τ) dτ (196)

and

∂târot = i[Ĥsys, ârot]−
∑
q

eiωdt−ωqfq b̂q,rot . (197)

Which we, in turn, can write as

∂târot = i[Ĥsys, ârot]−
κ

2
â−

∑
q

fqe
(iωdt−ωq)e−iωq(t−t0)b̂q(t0) . (198)

and gives us

b̂in,rot =
1√
2πρ

∑
q

e(iωdt−ωq)e−iωq(t−t0)b̂q(t0) = e(iωdt−ωq) b̂in , (199)

b̂out,rot = e(iωdt−ωq) b̂out . (200)
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We still find that

∂tâ,rot = i[Ĥsys, â,rot] +
κ

2
â,rot −

√
κ b̂out,rot(t) , (201)

∂tâ,rot = i[Ĥsys, â,rot]−
κ

2
â,rot −

√
κ b̂in,rot(t) (202)

and

b̂out,rot = b̂in,rot +
√
κâ,rot(t) . (203)

J Entropy Production for Gaussian States

In this part of the appendix we show the calculations to derive Eq. (68) and
(73). We start with the entropy production rate (67), here reproduced for
convenience.

∂tΣ =
−J

T
+ kB∂tSvN[ρ̂] , (204)

where J is our heat current, T is the temperature, kB is the Boltzmann constant,
SvN the von Neumann entropy and ρ̂ the density matrix of the system. For a
Gaussian state we can express the entropy as

kBSvN[ρ̂] = kB [(σ + 1)ln(σ + 1)− σln(σ)] , (205)

as is demonstrated in [9], where σ is defined as

σ =
√
αβ − γ2 − 1

2
, (206)

with α = i 12 ⟨⟨(â
† − â)2⟩⟩, β = 1

2 ⟨⟨(â
† + â)2⟩⟩ and γ = i 14 ⟨⟨(â

† − â)(â† + â) +
(â† + â)(â† − â)⟩⟩. We can use this definition to find

σ =

√
⟨⟨â†â⟩⟩2 + ⟨⟨â†â⟩⟩ − ⟨⟨â†â†⟩⟩⟨⟨ââ⟩⟩+ 1

4
− 1

2
. (207)

If we now assume no squeezing (⟨⟨â†â†⟩⟩ = ⟨⟨ââ⟩⟩ =0), we can write this ex-
pression as

σ =

√
(⟨⟨â†â⟩⟩+ 1

2
)2 − 1

2
= ⟨⟨â†â⟩⟩ . (208)

We can now calculate its time derivative as follows

∂tσ = ∂t⟨â†â⟩ − ⟨â†⟩∂t⟨â⟩ − ⟨â⟩∂t⟨â†⟩ = κ(nB − ⟨⟨â†â⟩⟩) . (209)

When we take the time derivative of the von Neumann entropy, we get

∂tkBSvN[ρ̂] = kB∂tσ(ln(σ + 1)− ln(σ)) , (210)
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which, by substituting in σ and ∂tσ results in

∂tkBSvN[ρ̂] = kBκ(nB − ⟨⟨â†â⟩⟩)ln
(
⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩

)
. (211)

Now we use the Bose Einstein distribution

nB =
1

eωd/kBT − 1
, (212)

to write the temperature as

1

T
=

kB
ωd

ln

(
nB + 1

nB

)
(213)

by using ϵ = ωd. Now we can substitute −J
T and Eq. (211) into Eq. (204), to

find

∂tΣ =− κ(nB − ⟨â†â⟩)kB ln
(
nB + 1

nB

)
(214)

+ kB(nB − ⟨⟨â†â⟩⟩)ln
(
⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩

)
=kBκ

(
− (nB − ⟨â†â⟩)ln

(nB + 1

nB

)
(215)

+ (nB − ⟨⟨â†â⟩⟩)ln
( ⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩
))

=kBκ(nB − ⟨⟨â†â⟩⟩)
(
ln
( ⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩
)
− ln

(nB + 1

nB

))
(216)

+ kBκ⟨â†⟩⟨â⟩ln
(nB + 1

nB

)
If we now want to do the same calculation for J ′ instead of J , we simply use
J ′ = J + ωdκ⟨â†⟩⟨â⟩, which results in

∂tΣ
′ =∂tΣ− kBκ⟨â†⟩⟨â⟩ln

(
nB + 1

nB

)
=kBκ(nB − ⟨⟨â†â⟩⟩)

(
ln
( ⟨⟨â†â⟩⟩+ 1

⟨⟨â†â⟩⟩
)
− ln

(nB + 1

nB

))
.

(217)
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