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“Only when a system behaves in a su�ciently random way may the di↵erence between past and future,
and therefore irreversibility, enter its description.”

– Ilya Prigogine, Order Out of Chaos: Man’s New Dialogue with Nature



Abstract

This thesis investigates the influence of nonreciprocity on directional transport and thermal noise in few-mode bosonic
systems. A system is called nonreciprocal if transmission features are altered under an exchange of source and
detector. Recent advances revealed that dissipative quantum systems can break reciprocity if coherent and dissipative
interactions are balanced out, which causes destructive interference in only one transport direction. This approach
generalizes the theory of cascaded quantum systems and is based on reservoir engineering, where the dissipative
coupling between two resonators is achieved by the addition of an auxiliary element. This auxiliary element can be
just another dissipative resonator. The underlying system is based on a minimal model of three coherently coupled
dissipative resonators, subject to thermal noise, arranged in an Aharonov-Bohm ring. Similar to the Aharonov-Bohm
e↵ect, gauge-invariant phases appear in the three-mode configuration, enforcing nonreciprocal transport for nontrivial
values. To investigate the role of (non)reciprocity on thermal noise, we developed a theoretical framework centered
on gauge-invariant phases for bilinear systems using input-output theory. The e↵ect of di↵erent transport limits on
scattering probabilities and thermal noise at output-ports is compared across multiple linearly coupled models in the
mode and quadrature basis. We show that the noise solely depends on the phases, while scattering additionally varies
depending on the chosen basis. Our approach reveals that (non)reciprocity influences how noise is redistributed at
outputs, and that such systems act as frequency filters for incident noise. Correlations between output-modes become
complex outside the unidirectional limit, thus clearly indicating the transport regime of the system. Building on this
analysis, we propose an expanded four-resonator design that o↵ers enhanced control over directional transport. This
system resembles a directional transistor with full bias-control, achieved only by tuning gauge-invariant phases. This
thesis advances our understanding of nonreciprocity in bosonic systems and their influence on thermal noise. Our
findings introduce new possibilities for manipulating quantum signals and noise in applications ranging from quantum
information processing to quantum-limited communication networks.

Disclaimer: AI was only used to increase legibility of the text. We used DeepL Translator, ChatGPT, TeXGPT,
and Claude AI, to enhance grammar, orthography and stylistic choices. Nothing in terms of the content itself was
generated by any LLM or AI in general.
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I. Introduction

Nonreciprocity in dissipative bosonic systems has become a pivotal concept in quantum optics, revolutionizing our
way of manipulating light-matter interactions [1–4]. The classical notion, after Lorentz’s reciprocity theorem, states
that the transmission features of a system remain invariant under an exchange of source and detector [5]. Recent
developments demonstrate that dissipative quantum systems can violate reciprocity, establishing such systems as
promising candidates for a wide range of applications in modern photonics [1, 6, 7]. The advent of nonreciprocal de-
vices, such as isolators, circulators, and directional amplifiers, has led to significant advancements in signal processing,
communication networks, and the control of signal flow [8, 9]. Building quantum analogues facilitates the operation of
quantum signals, such as the readout of superconducting qubits [10], with a precision approaching fundamental limits,
ideally by minimizing noise to the greatest possible extent [11, 12]. In general, transport in nonreciprocal systems
can reach various operating limits, i.e. the fully symmetric reciprocal limit, the unidirectional limit with maximized
directionality, or amplification limits. Metelmann and Clerk (2015) [1] introduced a versatile approach for designing
nonreciprocal quantum systems. They proposed a model involving two coherently coupled dissipative resonators that
also interact with a shared reservoir. As they illustrate, interference between coherent and suitable dissipative inter-
actions results in nonreciprocity - a technique known as reservoir engineering. The strength of this approach lies in
its ability to achieve nonreciprocity using only dissipative couplings without the need for a pre-designed nonreciprocal
element. Hence, achieving nonreciprocity in a system still has a cost: the addition of a dissipative element. Due to its
broad applicability, reservoir engineering has garnered significant attention in recent years for creating nonreciprocal
quantum devices [1, 2, 13, 14]. A way the shared reservoir can be realized is via an auxiliary resonator acting as
the dissipative element. The proposed model consists of three coupled dissipative resonators, which are arranged in
an Aharonov-Bohm ring [15, 16]. Much like the Aharonov-Bohm e↵ect, phase-shifts between traversable paths in
a closed loop can accumulate to a single gauge-invariant phase. Tuning this phase to a non-trivial value enforces
nonreciprocity. Since each of the resonators is in contact to a local thermal environment, it opens up the exploration
of the system’s influence on thermal noise and directional transport in general.
The aim of this thesis is to uncover the precise impact of nonreciprocity on thermal noise, an area that has yet to be
fully explored. Here we not only show that nonreciprocity redistributes noise and acts as a frequency-filter, but also
that a greater control of directional transport can be achieved by expanding the system design. In order to understand
nonreciprocal physics in more detail, we explored the theoretical underpinnings and implementations of nonreciproc-
ity in di↵erent few-mode bosonic systems. Note that the presence of linear and parametric processes inside a given
system vastly complicates the identification of gauge-invariant phases. To address this, we found a way to analyze
these phases pictorially. This approach can become useful for understanding more extensive systems. We describe
elements of our system, like the scattering matrix or the noise spectral density, in terms of these phases. This has the
additional benefit of giving us a greater appreciation for intermediate values between the extremes of the reciprocal
and unidirectional limits. The e↵ect of nonreciprocity on the scattering matrix and noise was then compared across
di↵erent models in the mode and the quadrature basis. This distinction in representations is particularly useful for
describing parametric processes. We found that the variances of the output-noise are una↵ected by our choice of
basis and depend solely on the phase. This is di↵erent for scattering probabilities, which are significantly influenced
by the chosen representation, especially for the reciprocal limit. Additionally, the focus on phases aids the search
for a broader class of nonreciprocal systems, which was illustrated by expanding the basic three-resonator model
to a four-resonator configuration. This proposed configuration not only e↵ectively reproduces known unidirectional
transport, but also o↵ers novel limits, where any transport between a given pair of resonators can be fully suppressed
- resembling a directional transistor. This four-resonator extension achieves complete bias control simply by tuning
phases and without altering any other system-specific parameters like coupling strengths or dissipation rates.
Our results successfully demonstrate how the emphasis on noise and gauge-invariant phases can be used to construct
more complex and sophisticated control systems [17]. Thus, we expect this thesis to motivate future research in the
field of directional thermal systems and their ability to redistribute and filter noise.

This thesis is organized as follows: Section II briefly provides a theoretical background for many concepts relevant to
this thesis. First, we discuss how nonreciprocity has to be understood (Sec. II A and IIB), continue by presenting
di↵erent ways of expressing quantum states of light (Sec. II C), and finish this Section with the input-output formalism
for open systems (Sec. II E). Section III delves into theoretical underpinnings of the system itself. We do this as a
step-wise addition of features, where we start at the bare isolated system and work our way up to a more faithful
description of the dissipative system. First, we introduce a general time-dependent Hamiltonian of the three-mode
system (Sec. III A) and demonstrate a way to (experimentally) introduce phase-shifts between interaction parameters
(Sec. III A 1). This gives us the time-independent Hamiltonian for the isolated system. Then we couple resonators
to reservoirs (Sec. III B) using the Heisenberg-Langevin equation, yielding equations of motion for the resonators
(Sec. III B 1). The equations of motion are then expressed in terms of Aharonov-Bohm phases (Sec. III B 2), which
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are compactly written using an extension of the Bologiubov-de-Gennes formalism for open bosonic systems (Sec.
III B 3). After that, we introduce the quadrature representation (Sec. III C), which is frequently used when dealing
with squeezed states or two-mode squeezing interactions, and finish the three-mode model by expressing everything in
frequency space (Sec. IIID). Section III E introduces the e↵ective two-mode model already known from Metelmann
and Clerk (2015) [1]. This toy-model can be understood as a limit of the general three-mode model and gives us
a greater appreciation for di↵erent transport limits and how to achieve maximized power-transfer. Section III F,
builds up on this e↵ective model and shows us which conditions are necessary to achieve nonreciprocal transport by
(partially) decoupling one mode from other (in one direction), either for a model with only beam-splitter interactions
(optical isolator), and another with parametric interactions (parametrically driven directional amplifier). Note, the
provided conditions are not yet su�cient for unidirectional transport without power-loss. The last aspect of the
system, see Sec. IIIG, takes a deeper look at the energy-spectrum of the dissipative three-mode ring and the optical
isolator (both models are only linearly coupled). Section IV is about the scattering matrix and transmission features.
First, we derive the S-matrix in Sec. IVA, and compare properties of the S-matrix for reciprocal to nonreciprocal
systems, see Sec. IVB. After that, we take a look at scattering features of the optical isolator in Sec. IVC, where we
find the su�cient criterion for unidirectional transport with maximized power. In Section V we derive an expression
for the noise-spectral density for output-fields of the reservoir. This will give us an understanding how the system
filters and redistributes thermal noise. Again, this is exemplified by the optical isolator (Sec. VC). Section VI analyzes
the scattering and noise behaviour for the dissipative three-mode ring, and the four-mode extension, the dissipative
directional transistor. The main results are discussed in Sec. VII, and the thesis is concluded in Sec. VIII, where we
also provide a further outlook.
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Table of symbols and results

Symbol Definition (~ = 1). All symbols with ·̃ are in the mode-basis.

Re(z), Im(z) Real and imaginary parts of a complex number z 2 C, defined as Re(z) = (z⇤ + z)/2 and Im(z) = i(z⇤ � z)/2

Fourier transform conventions.

f [!] Fourier transform of an operator-valued function f(t), defined as f [!] = F{f(t)}[!] = 1p
2⇡

R1
�1 dt f(t)e�i!t

f
†[!] Fourier transform of adjoint operators f†[!] = 1p

2⇡

R1
�1 dt f†(t)e�i!t = (f [�!])†

�ij , �(t� t
0) Kronecker delta, and Fourier transform relation of the Dirac delta function �(t� t

0) = 1
2⇡

R1
�1 d!e�i!(t�t0)

Operator representations with i, j = 1, · · · , N .

ai (a
†
i ) Bosonic annihilation (creation) operator of cavity i, with [ai, a

†
j ] = �ij , [ai, aj ] = [a†

i , a
†
j ] = 0

xi, pi Quadrature operators xi = 1p
2
(a†

i + ai), pj = ip
2
(a†

j � aj), with [xi, pj ] = i�ij , [xi, xj ] = [pi, pj ] = 0

hai Expectation value of an operator hai = Tr{a⇢}, where ⇢ is the density matrix of the system

Three-mode system with i 6= j = 1, 2, 3.

Jij , �ij Beam-splitter Jij = |Jij |ei↵ij , and two-mode squeezing �ij = |�ij |ei�ij amplitudes, with phase ↵ij , and �ij

Hhop Beam-splitter Hamiltonian in the interaction picture Hhop = J12a
†
1a2 + J31a

†
3a1 + J32a

†
3a2 +H.c.

Hsq Two-mode squeezing Hamiltonian in the interaction picture Hsq = �12a
†
1a

†
2 + �31a

†
3a

†
1 + �32a

†
3a

†
2 +H.c.

Hsys System Hamiltonian in interaction picture Hsys = Hhop +Hsq

�,#1,#2 Gauge-invariant phases � ⌘ ↵12 + ↵31 � ↵32 (mod 2⇡), #1 ⌘ �12 � �31 + ↵32 (mod 2⇡), #2 ⌘ ��12 � ↵31 +
�32 (mod 2⇡)

i Damping rate of the cavity i to its respective reservoir

�R,L Maximally nonreciprocal values of the gauge-invariant phase � with �R,L ⌘ ±⇡
2 (mod 2⇡)

�0 Reciprocal values of the gauge-invariant phase � with �0 2 {0,±⇡} (mod 2⇡)

Bogoliubov-de-Gennes extension for open systems with N modes.

⇤i Extended Pauli matrices ⇤i = �i ⌦ 11N , with i = x, y, z

a Vector of bosonic operators a ⌘ (a1, · · · , aN , a
†
1, · · · , a

†
N )T

a† Adjoint vector a† ⌘ (a†
1, · · · , a

†
N , a1, · · · , aN ), the vector fulfills [ai,a

†
j ] = (⇤z)ij , [ai,aj ] = i(⇤y)ij

a‡ Column vector with adjoint elements a‡ ⌘ ⇤xa

H Hamiltonian matrix in BdG form H =

✓
h1 h2

h⇤
2 h⇤

1

◆
, with h1 =

0

@
0 J12 J

⇤
31

J
⇤
12 0 J

⇤
32

J31 J32 0

1

A, and h2 =

0

@
0 �12 �31

�12 0 �32

�31 �32 0

1

A

A Dynamical matrix of the closed system A = �i⇤zH
K̃ Matrix of damping rates K̃ = 112 ⌦ diag(1, · · ·N )

D Dynamical matrix of the open system D = A� 1
2K̃

v Vector of quadrature operators v = (x1, p1, · · ·xN , pN )T , the vector fulfills [vi,vj ] = i⌦ij , with ⌦ = 11N ⌦ i�y

T Unitary transformation matrix between mode and quadrature basis, with v = Ta

M Dynamical matrix of the open system in the quadrature representation M = TDT†
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Symbol Definition (~ = 1). All symbols with ·̃ are in the mode-basis.

E↵ective two-mode model.

J,� Interaction parameters J := J12, � := �12

uj , vj , µ, ⌫ E↵ective unit-less interaction strengths uj := J3j/J , vj := �3j/J , µ = v1v
⇤
2 � u2u

⇤
1, ⌫ = v1u

⇤
2 � v2u

⇤
1

|µ1,2|, |⌫1,2| Abbreviations |µ1| := |�31�32|, |µ2| := |J32J31|, and |⌫1| := |�31J32|, |⌫2| := |�32J31|
�[!] Non-Markovian e↵ective reservoir �[!] := 2|J |2/(i! + 3/2), here �0 ⌘ �[0] = 4|J |2/3 is the Markovian limit

�j [!] Scaled e↵ective reservoir �j [!] := �[!](|uj |2 � |vj |2)

ae↵ Vector of bosonic modes in the e↵ective model ae↵ = (a1, a2, a
†
1, a

†
2)

T

ve↵ Vector of quadratures in the e↵ective model ve↵ = Te↵ ae↵, where Te↵ is the e↵ective transformation matrix

Ae↵ (De↵[!]) Dynamical matrix of the closed (open) e↵ective model

Me↵[!] Dynamical matrix of the open e↵ective model in the quadrature basis, with M⇤
e↵[0] = Me↵[0] only for ! = 0

#1,⌥,#1,0 Nonreciprocal limits for the phase #1 with #1,⌥ ⌘ ⌥⇡
2 (mod 2⇡), and phase-sensitive quasi-reciprocal limits

#1,0 2 {0,±⇡} (mod 2⇡), for the parametrically driven amplifier

Energy spectrum.

Hk Diagonal Hamiltonian in momentum space of the dissipative ring (with N = 3) Hk =
P

m=0,±1 !̄mb
†
mbm, with

energies !̄m =
P

m 2|J | cos((�� 2⇡m)/3), quasi-momemtum eigenstates b†m = 1p
N

P
j e

i 2⇡m
3 a

†
j

Hk Diagonal Hamiltonian matrix in momentum space

Ak Diagonal dynamical matrix of the closed system Ak = �i⇤zHk = �idiag(!̄�1, !̄0, !̄1,�!̄�1,�!̄0,�!̄1)

Dk Diagonal dynamical matrix of the open system Dk = Ak � 1
2K̃

Scattering matrix.

ain[!], aout[!] Reservoir input/output field vector in the mode basis

vin[!],vout[!] Reservoir input/output field vector in the quadrature basis

�̃[!] Susceptibility matrix in mode basis �̃[!] = (i!11�D)�1, with �̃⇤[!] = ⇤x�̃[�!]⇤x

�[!] Susceptibility matrix in quadrature basis �[!] = (i!11�M)�1, with �⇤[!] = �[�!]

Basis transform �̃[!] = T†�[!]T

S̃[!] S-matrix in mode basis S̃[!] = 11�
p

K̃�̃[!]
p

K̃, with aout[!] = S̃[!]ain[!], and S̃⇤[!] = ⇤xS̃[�!]⇤x

Note, a†
out[!] = a†

in[!]S̃
†[�!], and a‡

out[!] = S̃⇤[�!]a‡
in[!]

S[!] S-matrix in quadrature basis S[!] = 11�
p
K�[!]

p
K, with S⇤[!] = S[�!]

Basis transform S̃[!] = T†S[!]T
S = ST Symmetric S-matrix for an reciprocal system

Cj Cooperativity Cj ⌘ �j [0]/j

�j [0] = j Impedance matching condition �j [0] = j =) 4|J3j |2 = j3

Noise and Di↵usion.

n̄j Temperature-dependent Bose-Einstein occupations of the input-modes

nth Vector of thermal occupations in the quadrature basis nth ⌘ (n̄1, n̄1, · · · , n̄N )T
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Symbol Definition (~ = 1). All symbols with ·̃ are in the mode-basis.

Cnon-sym Non-symmetrized covariance matrix for quadratures Cnon-sym = hhvvT ii ⌘ hvvT i � hvi hvT i
Csym Sym. covariance matrix Csym = 1

2 (Cnon-sym +CT
non-sym)

Cnon-sym
in [!,!0] Non-sym. input-covariance matrix Cnon-sym

in [!,!0] = hhvin[!]v
T
in[!

0] ii
Snon-sym
in Non-sym. input-noise with Cnon-sym

in [!,!0] = �(! + !
0)Snon-sym

in , and Snon-sym
in =

LN
j=1

⇥�
n̄j + 1

2

�
112 � 1

2�y

⇤

Cin[!,!
0] Input-covariance Cin[!,!

0] = �(! + !
0)Sin(nth)

Sin(nth) Input-noise Sin(nth) =
LN

j=1

�
n̄j + 1

2

�
112

Cout[!,!
0] Output-covariance Cout[!,!

0] = �(! + !
0)Sout[!]

Sout[!] Output-noise Sout[!] = Re(S[!]SinS
†[!])

S0 Vacuum-input S0 ⌘ Sin[0] = 112N/2

Svac Vacuum-output Svac = S0

Sth[!] Thermal-output (Sth[!])ij =
P2N

k n̄dk/2e Re{(S[!])ik(S†[!])kj}

C̃in[!,!
0] Input-covariance C̃in[!,!

0] = 1
2 hh {ain[!],a

†
in[!

0]} ii in the mode basis

S̃in Input-noise S̃in =
hLN

j=1(n̄j + 1
2 )
i
⌦ 112 in the mode basis

C̃out[!,!
0] Output-covariance C̃out[!,!

0] = �(! + !
0)S̃out[!] in the mode basis

S̃out[!] Output-noise S̃out[!] = 1
2 (S̃[!]S̃inS̃

†[!] + S̃[�!]S̃inS̃
†[�!]) in the mode basis

S
a†
iaj

[!] Element of the output-noise S
a†
iaj

[!] ⌘ (S̃out[!])ij = (S̃out[!])ji, with S
a†
iaj

[!] = S
aja

†
i
[!]

⇠̃aiaj [!] Scattering rectification ⇠̃aiaj [!] = (|S̃ajai |2 � |S̃aiaj |2)/(|S̃ajai |2 + |S̃aiaj |2) in the mode basis

⇣̃ij [!] Noise rectification ⇣̃ij [!] = (|S̃out

a†
iai

|2 � |S̃out

a†
jaj

|2)/(|S̃out

a†
iai

|2 + |S̃out

a†
jaj

|2) in the mode basis

Dissipative directional transistor

HT Hamiltonian of the directional transistor HT = J12a
†
1a2+J31a

†
3a1+J32a

†
3a2+J41a

†
4a1+J42a

†
4a2+J43a

†
4a3+H.c.

aT Vector of bosonic modes aT := (a1, · · · , a4, a
†
1, · · · a

†
4)

T

ÃT Dynamical matrix of the isolated system ÃT = �i⇤zHT

K̃T Damping rate matrix K̃T = 112 ⌦ diag(1, · · · ,4)

D̃T Dynamical matrix of the open system D̃T = D̃T � 1
2K̃T

⌧1, ⌧2, ⌧3 Gauge-invariant phases ⌧1 = ↵31 �↵41 +↵43 (mod 2⇡), ⌧2 = �↵32 +↵42 �↵43 (mod 2⇡), and ⌧3 = ↵12 +↵41 �
↵42 (mod 2⇡)

|�| E↵ective coupling strength |�| := |J12|
�i[!] E↵ective susceptibility to the auxiliary reservoirs �i[!] := 1/(i! + i/2), with i = 3, 4

�̄[!] Shared e↵ective susceptibility �̄[!] := �3[!]�4[!]

d̄[!] Unit-less scaling factor d̄[!] := 1/(1 + �̄[!]|J43|2)
�1[!], �2[!] Dissipative interaction parameters �1[!] := �3[!]d̄[!]|J31J32|, and �2[!] := �4[!]d̄[!]|J41J42| (analogous to �[!]

of the optical isolator)

µ1[!], µ2[!] E↵ective renormalized interaction parameters µ1[!] := d̄[!]|J31J42J43|, and µ2[!] := d̄[!]|J41J32J43|
�̄i[!] E↵ective interaction strength of the complex damping rate �̄i[!] := 2�̄[!]d̄[!]|J3iJ4iJ43|, with i = 1, 2

�̄i[!]/2 E↵ective damping rate �̄i[!]/2 := (i + 2�3[!]d̄[!]|J3i|2 + 2�4[!]d̄[!]|J4i|2)/2, with i = 1, 2

�̄[0] = 1 Impedance matching condition �̄[0] = 1 =) 34 = 4 in units of  ⌘ i/2, with i = 1, · · · , 4



6

II. Theoretical Background

In the following, we will lay down a succinct and brief introduction to many theoretical concepts relevant to this
thesis. This will specify a common ground of the optical properties of open systems in general and help us to further
expand our understanding of nonreciprocity in later Sections.

A. Nonreciprocity

”What is Nonreciprocity?” is the first question we need to consider in this thesis. Luckily for us, this is also the title
of the publication from Caloz et al. [18]. Etymologically, nonreciprocity is the lack of reciprocity, having Latin roots
in the word reciprocus [18]. Here, two prefixes re- (backwards) and pro- (forward) give rise to reque proque, meaning
”going backward as forward” [18]. Thus, as Ref. [18] explains, “A nonreciprocal/reciprocal system is defined as a
system that exhibits di↵erent/same received-transmitted field ratios when its source(s) and detector(s) are exchanged”.
The notion of ratios is very useful for us, since we consider open systems in this work, and (non)reciprocity can be
adequately characterized by ratios of scattering probabilities. This sounds awfully similar to time-reversal symmetry
(breaking) [18–22] at first, however, there is some nuance to it. As Caloz et al. [18] and Carminati et al. [20] both
point out, the concepts reciprocity and time-reversal symmetric are indi↵erent for closed systems. Nonetheless, both
publications mention the su�ciently confusing discussion about the precise definition of reciprocity in open systems.
As both explain, an open system can be reciprocal, while still being able to break time-reversal symmetry. However,
we will defer from that particular detail and just use the definition of reciprocity provided above, where transport
between given ports remains invariant upon an exchange of source and detector, see Fig 1.

DS

SD SYSTEM

RECIPROCAL

SYSTEM

NONRECIPROCAL

EXCHANGE OF SOURCE AND DETECTOR

D S

SYSTEM

FIG. 1. Comparison between a reciprocal and a nonreciprocal system. In the left figure, a source (S) sends out a signal and
meets a detector (D) after interacting with the system. Upon change of source and detector (teal dashed lines), a reciprocal
system will behave the same (upper right), whereas a nonreciprocal system has either partially suppressed (grey dashed lines),
fully suppressed (red crosses) or amplified transport in the opposite direction (lower right).

B. Review of the Aharonov-Bohm e↵ect

To understand nonreciprocal transport, we will first review the Aharonov-Bohm (AB) e↵ect. The Aharonov-Bohm
e↵ect, initially proposed as a thought experiment in the seminal paper Significance of Electromagnetic Poten-
tials in the Quantum Theory by Y. Aharonov and D. Bohm in 1959 [15], represents a pivotal moment in the
understanding of quantum mechanics. This theoretical prediction, which shows the physical significance of elec-
tromagnetic potentials, was experimentally verified by Peshkin in 1989 [16]. The publication by Aharonov and
Bohm sparked considerable debate, initially questioning the e↵ects validity and subsequently exploring its practi-
cal implications [16, 23–25]. There is even substantial philosophical literature on the AB e↵ect, mainly focused
on the nature of non-locality and “reality” of physical quantities, see Liu [26]. Today, the Aharonov-Bohm ef-
fect can be seen as a special case of a broader class of physical theories, namely, the study of geometric phases
and topology in physics. Note, that the following is based upon the book by Lancaster and Blundell [27].
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�BS

D

|��

|�1�

|�2�

A

original

shifted

FIG. 2. Schematic of the Aharonov-Bohm e↵ect. A split beam
of particles with charge q is sent from the source S to the detec-
tor D. An encapsulated solenoid with constant magnetic flux
�B shifts the interference pattern at the detector, even though
the beams feel no magnetic field, as B = 0 outside the solenoid.
The interference pattern is shifted due to the vector potential
A 6= 0 creating a phase di↵erence � = q

~�B between the paths.

To understand this thought experiment, we consider a
modified double slit experiment, see Fig. 2. A coherent
beam of particles, where | i is the state of a particle
with charge q, are emitted from a source S. The beam
is then split into two distinct parts | 1i and | 2i, be-
fore coming together at the detectorD, measuring their
interference pattern. A thin, long solenoid, with a con-
stant magnetic flux �B, is placed after the double slit
and between the two beams. There is no magnetic field
outside the solenoid. Thus, the particles never expe-
rience the magnetic field. Surprisingly, the presence
of the magnetic field does change the interference pat-
tern at the detector! So why does this e↵ect occur?
There are several ways to understand this, but we can
just look at the probabilities to understand it in an ef-
fective manner: The probability to measure the state
in a double-split experiment is given by the modulus
squared

| |2 = | 1|
2 + | 2|

2 + (h 1| 2i+ h 2| 1i) , (2.1)

where the latter two terms are the interference terms of the waves at the detector D. Not the magnetic field
B = r ⇥A itself, but its vector potential A shifts the phases of the propagating waves. This is since plane-waves
| 1,2i / e

ipr, and A change the momentum p ! p � qA. This implies, that | 1,2i acquires an additional phase
| 1,2i ! | ̃1,2i ⌘ e

i↵1,2 | 1,2i, where ↵1,2 = � q

~
R
A ·dr. Now, one could think that this problem could be just gauged

away by applying A! A+r�. However, since we are interested in the phase di↵erence between the paths, namely
� ⌘ ↵1 � ↵2, it implies

� = ↵1 � ↵2 = �
q

~

Z

S!1!D

A · dr +
q

~

Z

S!2!D

A · dr =
q

~

I
A · dr , (2.2)

where the last integral is evaluated anticlockwise around the trajectories. Since the path is a closed circle, Stokes’
theorem gives us

� =
q

~

I
A · dr =

q

~

Z
r⇥A · dS =

q

~

Z
B · dS =

q

~�B , (2.3)

where the result � = q

~�B is in units of the flux quantum [28]. Applying a gauge transformation does not save us from
this e↵ect, since the shift of the vector potential vanishes

H
r� · dr = 0. This means, that even though the particles

see no explicit magnetic field, there still appears a gauge invariant local phase between the paths, which changes the
interference pattern. Calculating the probabilities of the new waves gives us

| |2 = | 1|
2 + | 2|

2 + 2| 1|| 2| cos � , (2.4)

where the interference pattern is now shifted by the phase � = q

~�B.

All considerations we have made thus far hold only for charged particles, which are influenced by a magnetic vector
potential. Nonetheless, similar e↵ects can even occur without physically observable magnetic fields for chargeless
particles such as photons. As already mentioned, Aharonov-Bohm phases are today understood as a specific instance
of more generalized phases. These so-called geometric (Berry) phases have become a recurring area of interest, as they
can explain the occurrence and the impact of topological defects in systems, most famously for the quantum Hall e↵ect
[29, 30]. To understand how gauge-invariant phases arise in our system, we make a quick remark about geometric
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phases, see Refs. [31, 32]. For this, consider a cyclic adiabatic evolution of a Hamiltonian in some parameter-space.
This evolution can lead to a gauge-dependent Berry potential. Since this potential is gauge-depended (and can be
simply gauged away), it is not physically observable. This artificial potential then gives rise to an artificial magnetic
monopole, close in spirit to the physical observable magnetic field of the AB e↵ect. However, integrating the Berry
potential over a closed path yields gauge-independent geometric phases, which are observable and change the topology
of the system for appropriate non-trivial values. Even though geometric phases are more general than AB phases,
there is still a common theme for both, which applies to our system: Since our resonators have multiple interactions
that form closed paths, excitations traversing these interactions pick up relative phase-shifts, which accumulate to
gauge-invariant phases. These then enforce nonreciprocal transport for non-trivial values. The specifics for this will
be touched upon in Section III B 2 and III F.

C. States of the quantized electromagnetic field

In this section, we briefly introduce states of the quantized electromagnetic field that are appropriate for expressing
optical fields. For a single-mode (monochromatic) field, dynamics can be described using Fock (number) states [33],
which are eigenstates of the quantum harmonic oscillator [33]. If the system would be in contact with a finite-
temperature reservoir, we could adequately describe the dynamics using single-mode thermal states (after reaching
thermal equilibrium) [34]. Note, that multi-mode fields can be expressed using number states. Nonetheless, since
most optical fields are either superposed or mixed number states, we can find a di↵erent way of expressing such
fields. A suitable description are coherent states, which have an indefinite number of photons. However, they have
an important property, making them very suitable for describing quantized light fields: Coherent states equally
minimize the Heisenberg uncertainty in amplitude and phase, which makes them the closest analogues to classical
electromagnetic fields, with the lowest amount of quantum noise in phase space. Coherent states are already su�cient
for many applications and are frequently used in Laser physics [33, 34]. However, this is not the end of the story.
For this, consider the uncertainty relation �A�B � ~/2 for two self adjoint operators Â and B̂. This formula has
only one requirement: That the product of their standard deviations is subject to a lower bound. Therefore, one can
consider a broader class of uncertainty-minimizing states, where the uncertainty in one observable is reduced at the
expense of an increased uncertainty in the other, while the integrity of the uncertainty relation is still maintained.
These more general states are called squeezed states, which can be used for precise quantum measurements, as they
reduce the amount of noise below the standard “shot noise limit” of the vacuum state [35]. All states mentioned above
(except non-vacuum number states), can be classified as Gaussian states, which are frequently used in the context of
quantum optics and o↵er useful statistical properties, see Refs. [35, 36]. Thus, the last part of this section about field
quantization will be dedicated on the physics of Gaussian states.

To define minimal-uncertainty coherent states, it is useful to first take a look at number states. Note, that the
subsequent sections roughly follow Meystre [34], and Walls and Milburn [33].

1. Multi-mode number states

Consider a cavity, enclosed by lossless reflecting mirrors, where we want to quantize a multi-mode field. Using
Maxwell’s equations, we can find the Hamiltonian of this system, expressed as a sum of N single-mode harmonic
oscillators

Ĥ =
NX

s

Ĥs , with Ĥs = ~!s

✓
â
†
s
âs +

1

2

◆
, (2.5)

where !s is the frequency of a single-mode field, â†
s
(âs) are creation (annihilation) operators, and the last term is the

contribution of the so-called zero-point energy. For clarity, all operators are denoted by ·̂ in this section. The bosonic
creation (annihilation) operators fulfill the following commutation relations

[âs, â
†
s0 ] = �s,s0 , [âs, âs0 ] = [â†

s
, â

†
s0 ] = 0 , (2.6)
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where the commutator of two operators Â and B̂ is defined as

[Â, B̂] ⌘ ÂB̂ � B̂Â .

Here, we introduced the Kronecker delta

�kl =

(
1, if k = l ,

0, otherwise .
(2.7)

The eigenstates of the Hamiltonian are then the product of single-mode eigenstates

|n1i ⌦ · · ·⌦ |nN i = |n1, · · · , nN i ⌘ |{n}i 2 H
⌦N

, (2.8)

with nk 2 N>0, which builds up our orthogonal hnk|nli = �kl, and complete basis of the Fock space H
⌦N . The

creation (annihilation) operators act on the number state |{n}i as

â
†
k
|{n}i =

p
nk + 1|n1, · · · , nk + 1, · · · , nN i , âk|{n}i =

p
nk|n1, · · · , nk � 1, · · · , nN i , (2.9)

which creates (annihilates) an excitation inside |{n}i. This implies, that we can identify â
†
k
âk = n̂k inside the

Hamiltonian as the number operator, giving us the particle number nk of oscillator k when acted upon the number
state n̂k|{n}i = nk|{n}i. Thus, the average number of particles of an oscillator k is hn̂ki = h{n}|n̂k|{n}i = nk. Note
that there is a lower bound. Annihilating the lowest occupied state of an oscillator k, gives us the vacuum state with
âk|1i = |0i. For completeness, we will also quickly mention the energies of the quantum oscillator. To calculate the
energies Enk of oscillator k, we act with n̂k on a state |nki, and get from the time-independent Schroedinger equation
the following expression

Ĥk|nki = Enk |nki =) Enk = ~!k

✓
nk +

1

2

◆
. (2.10)

This implies that the zero-point energy of a vacuum state |0i is

E0k =
~!k

2
.

Now we are equipped to introduce coherent states.

2. Coherent states

There are many ways of constructing coherent states |↵i, here we stay in the single-mode picture, and introduce them
as right eigenstates of the annihilation operator

â|↵i = ↵|↵i , (2.11)

where ↵ is a parameter characteristic to the coherent state. This implies, that acting with â on |↵i does not change
the coherent state. Due to this stability, coherent states are highly practical in experimental settings [33, 34]. If we
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express |↵i in terms of number states

|↵i = e
�|↵|2/2

X

n

↵
n

p
n!
|ni , (2.12)

it shows that acting with â on the state gives us an additional factor of ↵, but leaves the sum invariant. Note, that
two coherent states |↵i, |�i are not orthogonal h�|↵i = exp

�
�

1
2 (|↵|

2 + |�|
2
� 2↵⇤

�)
�
, and thus form an overcomplete

basis, see Meystre [34]. However, if ↵ gradually deviates from �, they increasingly become orthogonal.

The probability of finding n photons in the coherent state is given by the Poisson distribution

pn = |hn|↵i|
2 = e

�|↵|2 |↵|
2n

n!
, (2.13)

This gives us the average photon number and variance

hn̂i = e
�|↵|2

1X

n=0

n
|↵|

2n

n!
= |↵|

2
, and �

2
n̂
= hn̂2

i � hn̂i
2 = |↵|

2
, (2.14)

where the Poisson distribution of the photon number converges to a Gaussian distribution for large values of hn̂i, see
Loudon [37]. Since we can write (â†)n|0i =

p
n!|ni, it follows that |↵i can be expressed in terms of the vacuum state.

With the Baker-Campbell-Hausdor↵ formula

e
Â+B̂ = e

Â
e
B̂
e
�[Â,B̂]

,

we get

|↵i = D̂(↵)|0i , with D̂(↵) ⌘ e
↵â

†�↵
⇤
â
, (2.15)

where we call D̂(↵) the displacement operator. Note, that this has implications on the vacuum state, as they are
non-displaced states for the limit ↵ = 0. This makes vacuum states unique, as they are zero-occupation Fock states
|0i, but also minimal uncertainty eigenstates of the annihilation operator â|0i = 0|0i. More formally, we can apply

the displacement operator D̂(↵ = 0) to |0i, and get D̂(0)|0i = e
0â†�0â

|0i = |0i. This again shows that coherent states
are displaced vacuum states.

In optical phase space, vacuum states can be expressed by quasi-probability distributions centered at the origin. If
we plot the in-phase and out-of-phase components of the state (its quadratures, see Sec. II C 3), the distribution has a
circular shape with equally minimized uncertainty or quantum noise in both components. Thus, the amount of noise
is encoded by the size of its distributions radius. The variance of the vacuum photon number is 1/2, see Ref. [35].
By applying the displacement operator on the vacuum, the state is displaced in phase space without changing the
amount of noise. Recall, that classical states have no uncertainty with a point-like distribution in phase space. Thus,
since the noise of a coherent state has the lowest possible quantum value, they are indeed characterized as the closest
analogue to classical states.

3. Squeezed states and two-mode squeezing

For ease of notation, we set ~ = 1 in this section. Consider a single-mode field described by the operator â (â†). We
can decompose this field into two Hermitian quadrature operators
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â(�) =
1
p
2
(x̂(�) + ip̂(�)) , and â

†(�) =
1
p
2
(x̂(�)� ip̂(�)) , (2.16)

or written equivalently

x̂(�) =
1
p
2
(â†(�) + â(�)) , and p̂(�) =

i
p
2
(â†(�)� â(�)) , (2.17)

where the fields depend on an additional phase �. The creation (annihilation) operators are then given by

â
†(�) ⌘ e

�i�
â
†
, â(�) ⌘ e

i�
â , (2.18)

and the quadratures fulfill following canonical commutation relations

[x̂(�), p̂(�)] = i , and [x̂(�), x̂(�)] = [p̂(�), p̂(�)] = 0 . (2.19)

The quadratures would correspond to the position and momentum of a classical oscillator. For the quantum case
however, they are real and imaginary parts of creation (annihilation) operators, and correspond to in-phase and
out-of-phase components of quantized fields, see Ref. [38].

By finding the phase � which minimizes the variances of quadratures, the uncertainty relation becomes an elliptic
equation

�x �p =
1

4

q
(1 + 2 hâ†âi � 2|hâ2i|)(1 + 2 hâ†âi+ 2|hâ2i|) �

1

4
. (2.20)

This gives us

�x�p �
1

4
, (2.21)

for a coherent state with |hâ
2
i| = 0. Squeezing happens, when |hâ

2
i| 6= 0. In that case, �x (�p) drops below 1/2,

where the other variance increases by the same amount above 1/2. Thus, the uncertainty relation of the product is
still fulfilled, even though one of the variances is less noisy. As this equation is an elliptic equation, the squeezed state
becomes an ellipse in phase space. In practical terms, squeezing is often used to make either the amplitude or the
phase of a mode less noisy. This is particularly useful for quantum measurements, namely in heterodyne or homodyne
detection schemes, see Meystre [34], Walls and Milburn [33].

As before, we can also define a squeeze operator

Ŝ(⇣) ⌘ e
⇣â

†2�⇣
⇤
â
2

, with ⇣ ⌘
r

2
e
�2i�

, (2.22)

where ⇣ is the squeezing parameter. Applying this on a displaced state gives us a squeezed coherent state

|↵, ⇣i ⌘ Ŝ(⇣)|↵i = Ŝ(⇣)D̂(↵)|0i , (2.23)
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which is again a minimal-uncertainty state. For ↵ = 0 we get the squeezed vacuum state

|⇣i ⌘ Ŝ(⇣)|0i . (2.24)

Note, that squeezing and displacement operators almost commute, but commuting changes the argument of the
displacement operator D̂(↵)Ŝ(⇣) = Ŝ(⇣)D̂(�), with � = ↵ cosh r + ↵

⇤
e
i� sinh r. The mean photon number for a

squeezed vacuum state |⇣i is

hn̂isq = sinh2 r . (2.25)

This implies the following mean photon number for squeezed coherent state |↵, ⇣i

hn̂isq, coh = hn̂icoh + hn̂isq = |↵|
2 + sinh2 r . (2.26)

Squeezing can also be generalized to multi-mode fields. Here, squeezing reduces the noise between quadratures of
di↵erent modes, which is essentially nothing more than redistributing noise between given modes. For the simplest
case with N = 2, we can define the two-mode squeeze operator as

Ŝ2(⇣) = e
⇣â

†
1â

†
2�⇣

⇤
â1â2 . (2.27)

When this operator is acted upon the vacuum |0, 0i, this gives us the two-mode squeezed vacuum state

|T M S V i ⌘ Ŝ2(⇣)|0, 0i =
1

cosh r

X

n

(�e�2i� tanh r)n|n, ni . (2.28)

Note, that we will not consider any squeezed-light input in this thesis, but only consider thermal vacuum states,
see Sec. II C 4. However, two-mode squeezing is still relevant to us, since it can be understood as arising from an
interaction between two di↵erent resonators. To understand this, we consider a four-wave mixing interaction with a
parametric pump laser, see Meystre [34]. Here, two incident photons of the pump, each with frequency !p, interact
with two resonators. This will result in a signal photon with frequency !s, and an idler photon with !i. This process
can be described by the following e↵ective Hamiltonian (again with ~ = 1)

Ĥ4-wave-mix = !s â
†
s
âs + !i â

†
i
âi + i� â

†
s
â
†
i
� i�

⇤
âsâi , (2.29)

where the coupling strength � is proportional to the pump-laser amplitude E
2
p(!p). The time-evolution operator

(properly defined in Sec. II E 2) becomes

Û(t) ⌘ Ŝ2(⇣) , with ⇣ = ��t (2.30)

which is exactly the two-mode squeeze operator from above! For the degenerate case with ! ⌘ !s = !i, and
â ⌘ âs = âi, the time-evolution reduces to the single-mode squeeze operator Û(t) ⌘ Ŝ(⇣).
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4. Thermal states

For simplicity, we will only consider a single-mode field with the Hamiltonian Ĥ = ~!(â†â + 1/2), fully thermalized
to an external reservoir with temperature T . The average energy of Ĥ is the only thing that can be known and is
given by

hĤith = Tr
n
Ĥ ⇢̂th

o
, (2.31)

where ⇢̂th is the density matrix of the thermalized system state, and the average of an operator Â for a system state
⇢̂ is hÂi = Tr{Â⇢̂}. The thermalized system state can be found by invoking the maximum entropy principle using
the von Neumann entropy S = �kBTr{⇢̂th ln ⇢̂th}, where kB is the Boltzmann factor and “ln” the natural logarithm,
which can be identified as a Gibbs state:

⇢̂th =
exp(��Ĥ)

Z
, with Z ⌘ Tr

n
exp(��Ĥ)

o
. (2.32)

Here, � ⌘ 1/kBT is the unit-less inverse temperature, and Z the thermodynamic partition function. Using this state,
we can find an explicit form of the average energy

hĤith = ~!
✓
hn̂ith +

1

2

◆
, with n̄ ⌘ hn̂ith =

1

e~!/kBT � 1
, (2.33)

where the mean number of photons n̄ for a temperature T is given by the Bose-Einstein occupation. Consider now
limiting cases of the average energy. The oscillator reaches its ground state at absolute zero for T = 0, since only the
zero-point energy hĤith = ~!/2 remains. These zero-temperature fluctuations are unique for the quantum mechanical
oscillator and cannot be found in classical systems. However, for su�ciently high temperatures kBT � ~!, the average
energy of the quantum oscillator will approach the result of a classical oscillator hĤith ! hĤicl = kBT .

Note, that we have only demonstrated the single-mode field case here. The generalization is more technical for multi-
modal fields and can be found in Olivares [39]. The precise construction of thermal coherent states is achieved by
displacing a thermal vacuum state with the displacement operator, giving us

⇢̂th(↵) = D̂(↵)⇢̂thD̂
†(↵) . (2.34)

Which has implications on the mean photon number hn̂ith, coh of a thermal coherent state

hn̂ith, coh = Tr {n̂ ⇢̂th(↵)} = |↵|
2 + hn̂ith , (2.35)

as the mean photon number now depends on the displacement parameter and the thermal occupations. The variance
also increases

�
2
th, coh = hn̂2

ith, coh � hn̂i
2
th, coh = �

2
th + |↵|

2(1 + 2 hn̂ith) , with �
2
th = hn̂2

ith � hn̂i
2
th , (2.36)

meaning that the thermal state has a now a bigger amount of noise, depending on the temperature T . In turn,
coherent states are just displaced thermal states for T = 0K.

We can now make a few general remarks about (thermal) vacuum states. Since we will only consider thermal vacuum
states for the rest of this thesis, we view them as thermal coherent states with ↵ = 0, and an average photon occupation
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equal to the thermal occupation hn̂ivac = hn̂ith. But, di↵erent to non-thermal vacuum states, the variance of thermal
vacuum states is broadened in phase space, as the uncertainty is now higher and the state has more noise.

5. Gaussian states

In general, the term Gaussian state refers to any state in phase space, where its Wigner function (quasiprobability
distribution, see Refs. [33–36]) can be adequately described by a Gaussian function. We can write this Gaussian
function as

f(x) = ae
�(x�b)2

2c2 , (2.37)

which is symmetrically peaked at position b, has height a, width c, and rapidly falls of towards ±1. Vacuum,
coherent, squeezed, and even thermal states can all be classified as Gaussian. As mentioned above, this is not the
case for number states (except the vacuum). The reason for that is simple: Every Gaussian state can be su�ciently
described by a thermal state if the only actions on it are Gaussian unitaries (displacement, squeezing, rotation),
see Weedbrook et al. [35]. Thus, a single thermal state can be viewed as the most fundamental Gaussian state [35].
Bilinear systems (like the one we will consider) only act via Gaussian unitaries and thus preserve “Gaussianity”, since
any incoming Gaussian wave packet leaves the system still as a Gaussian [35]. More formally, we assume a general
bilinear Hamiltonian

Ĥbi-lin = ~

0

@
X

s

!sâ
†
s
âs + i⌫sâ

†
s
â
†
s
+
X

i,j

Jij â
†
i
âj + i�ij â

†
i
â
†
j

1

A+H.c. , (2.38)

for s = 1, · · · , N , i 6= j = 1, · · ·N , where !s is the frequency of a single resonator, ⌫s the squeezing interaction
strength, Jij the beam-splitter coupling between di↵erent modes and �ij the coupling between di↵erent modes via
two-mode squeezing. By writing it in the BdG-form (see Sec. III B 3 for more)

Ĥbi-lin =
X

i,j

â
†
i
Hij âj , (2.39)

with â ⌘ (â1, · · · , âN , â
†
1, · · · , â

†
N
)T , we find that the thermal state of this bilinear Hamiltonian becomes

⇢ =
e
��Ĥbi-lin

Z
=

exp
⇣
��
P

i,j
â
†
i
Hij âj

⌘

Z
. (2.40)

Any state, which can be written in the form above, is always guaranteed to be Gaussian, see [35, 36, 39, 40]. This
is reasonable as a Gaussian function can be written as f(x) / exp(�x2) in general. Gaussian states have useful
properties, since they can be fully determined by their first and second statistical moments [35]. Thus, knowing the
expectation values and variances of operators is su�cient enough to fully understand the physics of Gaussian states,
where higher statistical moments can always be decomposed into first and second moments.

D. Frequency space representation of operators

In this thesis we will heavily use the frequency space representation of operators as this gives us a clear understanding
of several things; mainly how incoming states are scattered depending on frequency, and additionally, how the system
filters frequencies of the noise of incoming Gaussian states. For this, we use the Fourier transform, which can transform
a given function between two dual representations. In our case, applying the Fourier transform to a complex valued



15

function (i.e. an operator â(t)), will decompose the function into its constituent frequencies and amplitudes. For this,
we introduce the following convention for the backward and forward Fourier transform

f̂(t) = F
�1
n
f̂ [!]

o
(t) =

1
p
2⇡

Z 1

�1
d! f̂ [!]ei!t

, and f̂ [!] = F

n
f̂(t)

o
[!] =

1
p
2⇡

Z 1

�1
dt f̂(t)e�i!t

, (2.41)

where F {·} is the Fourier transform operator acting on an arbitrary operator-valued function f̂ . For clarity of
notation, all functions in time space are denoted by round brackets (·), whereas in frequency-space we will use square
brackets [·]. The adjoint of an operator is transformed using the convention

f̂
†[!] = F

n
f̂
†(t)
o
[!] =

1
p
2⇡

Z 1

�1
dt f̂†(t)e�i!t =) f̂

†[!] =
⇣
f̂ [�!]

⌘†
, (2.42)

see Clerk et al. [41] for additional details. This is only a convention, however, this notion seems intuitive and acts the
same way as applying the complex-conjugation to a general complex-valued function. By using the Fourier transform,
we are enabled to use the subsequent well-known relation

F

n
˙̂
f(t)

o
[w] =

1
p
2⇡

Z 1

�1
dt ˙̂

f(t)e�i!t =
1
p
2⇡

lim
a!1

h
f̂(t)e�i!t

ia
�a| {z }

= 0, since limt!±1 f̂(t) = 0

�(�i!)
1
p
2⇡

Z 1

�1
dt f̂(t)e�i!t

, (2.43)

implying

F

n
˙̂
f(t)

o
[w] = i!f̂ [!] () F

n
˙̂
f
†(t)
o
[w] = i!f̂

†[!] , (2.44)

which essentially gets rid of bothersome time derivatives in frequency space, and instead of solving non-trivial di↵er-
ential equations, we are left with a set of algebraic equations. Note that the inverse of the above equation is also true.
Trivially, the same relation also holds for expectation values of operators

F

n
h
˙̂
f(t)i

o
[!] = i! hf̂ [!]i . (2.45)

E. Coupling isolated systems to reservoirs - Open quantum systems

1. Input-output theory

The following is based on the online appendices of Clerk et al. [41].

Usually, fields external to the cavity are modeled as a passive heat bath, exchanging heat and particles with the
system until the system state eventually equilibrates. Often, this is done with finding an appropriate Lindblad master
equation and solving it for the system state, see Appendix A. However, in the input-output formalism (I/O), we will
approach this di↵erently. The reservoir is treated as an external field (i.e. a Gaussian state) that interacts with the
intracavity field and leaves the system as a new external field. The environment then either drives or probes the
system. Thus, we need a joint formalism accounting for system-reservoir interactions, and can not simply trace out
the reservoir.

To see how this is done, consider a system composed of a simple harmonic oscillator Ĥsys, which is coupled to a

discretized continuum of external reservoir modes Ĥres, and interacts with the external modes Ĥint. This gives us the
total Hamiltonian
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Ĥtot = Ĥsys + Ĥres + Ĥint . (2.46)

The system itself is described by a single intracavity field mode with (~ = 1)

Ĥsys = !s â
†
â , (2.47)

where !s is the frequency of that mode, â (â†) is a bosonic annihilation (creation) operator, and we dismissed the
zero-point energy by rescaling. The Hamiltonian for the reservoir is

Ĥres =
X

q

!q b̂
†
q
b̂q , (2.48)

where we assume the reservoir to have a really wide frequency band, similar to the theory of spontaneous emission
from Weisskopf and Wigner [33, 42]. Here, b̂q is a bosonic field operator and q its quantum number. The bosonic
fields fulfill

[b̂q, b̂
†
q0 ] = �q,q0 . (2.49)

The reservoir modes must terminate at the system, which implies that there is no translational invariance and q is
not a real wave-vector. The modes are then stationary waves, reasonably assumed to be non-propagating close to
the system and only varying in time. The interaction Hamiltonian, by employing the rotating-wave approximation
(RWA), becomes

Ĥint = �i
X

q

⇣
gqâ

†
b̂q � g

⇤
q
b̂qâ

⌘
, (2.50)

where gq is the coupling strength between the system and the reservoir modes. The avid reader might see how any
parametric coupling terms drop out. This comes from the RWA, where we neglect high oscillating terms inside the
approximation. The dynamics of the cavity and reservoir operators are given by the Heisenberg equation (see Refs.
[43–45])

d

dt
â = i[Hsys, â]�

X

q

gq b̂q , (2.51a)

d

dt
b̂q = i[Ĥtot, b̂q] = �i!q b̂q + g

⇤
q
â . (2.51b)

The equation of motion (EOM) for the reservoir operators can be solved, since this is a linear system. For t0 < t in
the past before a wave packet has reached the cavity at time t, the solution for the reservoir EOM (2.51b) becomes

b̂q(t) = e
�i!q(t�t0)b̂(t0) + g

⇤
q

Z
t

t0

d⌧ e�i!q(t�⌧)
â(⌧) ⌘ b̂free(t0, t) + b̂radiated(t0, t) , (2.52)

The first term b̂free(t0, t) of the RHS is the free evolution of the mode, where the second term b̂radiated(t0, t) describes
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the coupling between the intracavity field to the reservoir with frequency !q. We can also write an analogous expression
for later times t1 > t

b̂q(t) = e
�i!q(t�t1)b̂(t1)� g

⇤
q

Z
t1

t

d⌧ e�i!q(t�⌧)
â(⌧) ⌘ b̂free(t1, t)� b̂radiated(t, t1) . (2.53)

By substituting the first solution of the reservoir fields (2.52) into the cavity EOM (2.51a), we get for the second term

X

q

gq b̂q =
X

q

gqe
�i!q(t�t0)b̂q(t0) +

X

q

|gq|
2

Z
t

t0

d⌧ e�i(!q�!s)(t�⌧)
⇣
e
i!s(⌧�t)

â(⌧)
⌘
, (2.54)

where we inserted an additional factor of 1 = e
�i!s(⌧�t)

e
i!s(⌧�t). The last term inside the brackets is assumed to

vary slowly in ⌧ . By only considering a single decay channel of the cavity oscillator from an excited state to the
ground state n = 1! n = 0, we can relate the decay probability to the system-reservoir coupling using Fermi’s golden
rule [46]. For this, recall that Fermi’s golden rule is a first-order perturbation, where the transition probability for
an initial state |ii (of an unperturbed Hamiltonian), to another state |ji (of a weakly perturbed Hamiltonian), is
essentially constant. This decay probability is thus related to the inverse of the mean lifetime within the (decay) rate
equation. This gives us

(!s) = 2⇡
X

q

|gq|
2
�(!s � !q) , (2.55)

where

�(x) =

(
1 , x = 0 ,

0 , x 6= 0 ,
with

Z 1

�1
dx �(x) = 1 , (2.56)

is the Dirac delta function. This can be re-written as

1

2⇡

Z 1

�1
d⌫ (!s + ⌫)e�i⌫(t�⌧) =

X

q

|gq|
2
e
�i(!q�!s)(t�⌧)

. (2.57)

Via the Markov approximation, which says that the coupling is constant (⌫) ⇡  over the relevant frequency range
of the cavity, we get

X

q

|gq|
2
e
�i(!q�!s)(t�⌧) = �(t� ⌧) , (2.58)

where we used

�(t� t
0) =

1

2⇡

Z 1

�1
d! e

�i!(t�t
0)
. (2.59)

By integrating from the past at t = �1 to t = t0, we get
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Z
t0

�1
dt �(t� t0) =

1

2
, (2.60)

where it follows for the cavity EOM

d

dt
â(t) = i[Ĥsys, â]�



2
â�

X

q

gqe
�i!q(t�t0)b̂q(t0) . (2.61)

Looking closer at our result, the field radiated out from the resonator to the reservoir can be simply seen as a linear
damping of the intracavity field. We can introduce the coupling constant g ⌘

p
|gq|

2 and define the density of states

⇢ =
X

q

�(!s � !q) , (2.62)

which implies for Fermi’s golden rule

 = 2⇡g2⇢ . (2.63)

This finally gives us an useful expression for the reservoir input-field

âin(t) ⌘
1
p
2⇡⇢

X

q

e
�i!q(t�t0)b̂q(t0) , (2.64)

and the cavity EOM reads

d

dt
â = i[Ĥsys, â]�



2
â�
p
 âin(t) , (2.65)

which is also called the Heisenberg-Langevin equation. This EOM is the famous result of I/O theory and relates the
dynamics of the intracavity field to input modes coming from the reservoir. This equation tells us, how a wave-packet
coming from the reservoir evolves freely, till it reaches the cavity, interacts, and drives the system. Hence, the wave-
packet âin can indeed be appropriately identified as the input-field to our cavity, reminiscent of classical I/O theory
for a driven oscillator and a transmission line, see Ref. [41]. Note however, that modes âin(t) and âin(t0) for di↵erent
times are completely di↵erent modes in general! Our system will interact at time t with âin(t), then after some time
t
0
> t, when the next mode is incident, interact with âin(t0). Note, that we will only consider incident white noise [41]

later, which is a constant field in frequency space.

If we now focus on the second solution for the reservoir-fields (2.53), we get the output-field

âout(t) ⌘
1
p
2⇡⇢

X

q

e
�i!q(t�t1)b̂q(t1) , (2.66)

for t1 > t > t0. Which is essentially the free evolving reservoir mode from the future (after interacting) back to the
present. We can write down the cavity EOM in terms of output-fields as
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d

dt
â(t) = i[Ĥsys, â] +



2
â�
p
 âout(t) . (2.67)

By subtracting Eq. (2.67) from Eq. (2.65), we find the so-called input-output relation

âout(t) = âin(t) +
p
 â(t) . (2.68)

This simple equation is a highly useful result, because it directly relates intracavity fields to input- and output-fields
of the reservoir.

2. The Langevin equation

The resulting stochastic di↵erential equation of the cavity can be seen as a linear process with constant di↵usion.
Thus, we can identify equation (2.65) as the quantum analogue of the classical Langevin equation, see Lemons and
Gythiel [47], Einstein [48], Gardiner and Collett [49], Zwanzig [50]. To understand this, we first look at the classical
Langevin equation describing Brownian motion of a viscous thermal fluid.

a. Brownian motion of a classical fluid

Consider a velocity vector v = (v1, · · · , vN )T for N particles with mass m, a diagonal matrix encoding the damping co-
e�cients (A)ii = ��i (or sometimes called the inverse of the particlesmobility), and a vector ⇠(t) = (⇠1(t), · · · , ⇠N (t))T

encoding collisions with other particles (sometimes called Langevin forces). The equation for the total force is then

Ftot = m v̇ = Av + ⇠(t) , (2.69)

where the first term of the RHS describes the drag of a viscous fluid (from Stokes’ law, see Zwanzig [50]), and the
second term is a rapidly fluctuating noise term due to particle collisions. The stochastic noise term ⇠(t) essentially
drives the system and influences the trajectory of the particle. The resulting trajectory is often called a random
walk. Mathematically, this type of noise is called a Wiener process, which has a Gaussian correlation function
h⇠i(t)⇠j(t0)i = 2Bi�ij�(t� t

0), with proportionality constant Bi. By the fluctuation-dissipation theorem, we get

Bi = �ikBT , (2.70)

which relates the strength of fluctuations Bi, to the magnitude of the dissipation �i, see Ref. [50]. As this noise has
an infinite variance at any time t, it is non-di↵erentiable in general (see the Thesis of Kurt Jacobs [51] for more).
However, by Fourier transforming the correlation function into frequency space, we find that the spectrum becomes
flat [51]. This is what we call white noise, which is exactly the relevant type of noise for this thesis. Since ⇠(t) is
rapidly fluctuating over the time-scale of collisions, it has zero mean h⇠(t)i = 0.

b. Quantum Langevin equation

Here we restate the Heisenberg-Langevin equation (2.65)

d

dt
â(t) = i[Ĥsys, â(t)]�



2
â(t)�

p
 âin(t) , (2.71)

for a single intracavity field a(t), where the first term is the coherent evolution of the isolated system, the second
term encodes dissipation due to the reservoir-coupling, and the last term is a fluctuating input-field. This essentially
has the same e↵ect as the classical Langevin force from before [34], but instead of being a real number, the Langevin



20

force is now operator-valued and stochastically “drives” the system. The Langevin force appears in the input-output
formalism as the reservoir input-field

âin(t) = hâin(t)i+ ⇠̂(t) , (2.72)

which we can decompose as the mean hâin(t)i and the so-called quantum noise operator ⇠̂(t). The noise operator is the
fluctuating part of the input-field and vanishes by taking the expectation value h⇠̂(t)i = 0. Note, that vacuum-fields
have an average of hâin(t)i = 0, and thus also vanish when taking the expectation value

d

dt
hâ(t)i = i h[Hsys, â(t)]i �



2
hâ(t)i . (2.73)

However, even though the mean noise for vacuum inputs is zero, the variances are not, just like for the classical case.
More on that in Sec. V.

Now is a good time to make a few remarks about the I/O approach compared to the standard Lindblad master
equation formalism. Note, that I/O theory already describes dynamics at the level of operators and not only their
expectation values. We could also employ the Lindblad master equation to calculate the EOMs, see Appendix A, but
we would need to include a coherent drive term inside the Hamiltonian to additionally describe an input. Without
an input, the time-evolution for the mean can be calculated using the adjoint Liouvillian L

† inside the Heisenberg
equation

d

dt
hâ(t)i = hL†

â(t)i = i h[Hsys, â(t)]i �


2
hâ(t)i . (2.74)

Therefore, a coherent drive term inside the Hamiltonian is not needed in the I/O formalism. There are shortcomings of
the I/O formalism however. Recall from Eq. (2.52), that b̂j(t) depends on â(t), and even though the intracavity field

and the reservoir fields as a whole commute for equal times [â(t), b̂j(t)] = 0, the free part does not [â(t), b̂free(t0, t)] 6= 0,
see Ref. [34]. Thus, interchanging reservoir and cavity operators is not possible without significant problems. This
issue can be resolved by choosing an ordering convention from the start and adhering to it, with normal-ordering
being the most commonly used standard, see Walls and Milburn [33], Meystre [34].

This concludes the theoretical background needed for this thesis and we can now look at the proposed system itself.
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III. System and model

A. Hamiltonian of the general three-cavity ring

��1 �a†
1 �a1 ��2 �a†

2 �a2J12(t) = 2 |J12 | cos((�1 � �2) t � �12)

J31 (t) = 2 |J31 | cos((�3 �
�1 ) t �

�31 )
�31 (t) = 2 |�31 | cos((�3 +

�1 ) t �
�31 )

�12(t) = 2 |�12 | cos((�1 + �2) t � �12)

� 23
(t)

= 2 |�
23

| co
s((�

2+
� 3) t

+ � 32
)

J 23
(t)

= 2 |J
23

| co
s((�

2�
� 3) t

+ � 32
)

�1/2 �2/2

�3/2

��3 �a†
3 �a3

FIG. 3. Three cavities with Hamiltonian ~!i â
†
i âi, are coupled either with

linear beam-splitter (BS) interactions Jij(t), or (parametric) two-mode
squeezing (TMS) interactions �ij(t), for i 6= j 2 {1, 2, 3}. Each resonator
is also dissipatively coupled to a reservoir with strength i/2. Here, the
adjoint interactions J⇤

ij(t) = Jji(t), and �
⇤
ij(t) = �ji(t) are not shown.

In this section, we will introduce the gen-
eral setup of the system, which is based on
Refs. [1, 14], and will be more thoroughly
analyzed in the coming chapters of this the-
sis. At first, we will focus only on the co-
herent dynamics of the system and derive an
expression of the Hamiltonian in the interac-
tion picture. By going this route and start-
ing from the time-dependent Hamiltonian in
the laboratory frame and then moving to the
time-independent representation, it becomes
clear how local phases start to appear and
accumulate to gauge-invariant phases. Tun-
ing these phases enables varying dynamical
behaviour of the model to di↵erent limiting
regimes. Namely, either reciprocal or nonre-
ciprocal transport of bosonic excitations be-
comes possible. By using the former estab-
lished Heisenberg-Langevin equation we can
then model dissipative currents in the fol-
lowing section. This is a key ingredient for
achieving nonreciprocity, as coherent and dis-
sipative couplings are balanced out and lead
to a destructive interference in only one direc-
tion of transport. In the subsequent Sections,
we will always use the convention “only peo-
ple wear hats, not operators”, except when it
is explicitly useful to do so. We will also al-
ways use natural units with ~ = c = 1. This
system of coupled bosonic resonators is described by assigning each resonator j a creation operator â

†
j
⌘ a

†
j
. This

creates a photon (or a phonon in an optomechanical setup) in the respective cavity of interest and fulfills the usual
bosonic commuation relations [aj , a

†
k
] = �jk and [aj , ak] = [a†

j
, a

†
k
] = 0. We assume that each pair of resonators

can interact via the following processes: 1. A linear beam-splitter (BS) interaction and 2. A parametric two-mode
squeezing (TMS) interaction. The most general case, where each pair is coupled via a beam-splitter and two-mode
squeezing interaction can be written as the time-dependent Hamiltonian (for j, k, l = {1, 2, 3})

H(t) = H0 +Hhop(t) +Hsq(t) =
X

j=1,2,3

!ja
†
j
aj +

X

k>l

⇣
Jkl(t) a

†
k
al + h.c.

⌘
+
X

k>l

⇣
�kl(t) a

†
k
a
†
l
+ h.c.

⌘
, (3.1)

where !j is the cavity frequency with the simplifying assumption that the three modes are non-resonant, namely,
!j 6= !k for k < l. Here, the parameters Jkl(t) 2 R (�kl(t) 2 R) are time-modulated matrix elements of beam-splitter
(two-mode squeezing) interactions, and “h.c.” is the hermitian conjugate, see Fig 3.

For the interactions we assume time-varying harmonic functions of the kind (see Ref. [14])

Jkl(t) = 2|Jkl| cos(�klt� ↵kl) , �kl(t) = 2|�kl| cos(�
0
kl
t� �kl) , (3.2)

where |Jkl| (|�kl|) is the coupling strength, �kl (�0
kl
) is the modulation frequency and ↵kl = �↵lk (�kl = ��lk) is

just a general phase shift, but contributes to the gauge-invariant phase later on. In the next subsection, we will derive
an expression of the Hamiltonian in the interaction picture.
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1. Derivation of the interaction picture Hamiltonian

Since we want to work in the interaction picture, we can use a unitary rotation

Ut ⌘ e
itH0 , (3.3)

which is just composed of the free harmonic term H0 and apply the following transformation to the full Hamiltonian

Hint(t) ⌘ UtH(t)U †
t
+ iU̇tU

†
t
, (3.4)

resulting in

Hint(t) = UtH0U
†
t
+ UtHhop(t)U

†
t
+ UtHsq(t)U

†
t
+ iU̇tU

†
t
. (3.5)

Now, we will look at each term of equation above individually. For this, we note that the unitary Ut and the free
Hamiltonian H0 commute with [Ut, H0] = 0, which implies for the first term

UtH0U
†
t
= H0 . (3.6)

Next, the last term of Eq. (3.5) can also be easily evaluated to be

iU̇tU
†
t
= i

2
H0 e

itH0e
�itH0

| {z }
1

= �H0 , (3.7)

which implies that only the remaining terms of eq (3.5) need to be considered. Let us focus on the hopping term

UtHhop(t)U
†
t
=
X

k>l

Jkl(t) e
itH0a

†
k
ale

�itH0 + J
⇤
kl
(t) eitH0a

†
l
ake

�itH0 , (3.8)

where we can insert an identity between the operators to get

X

k>l

Jkl(t) e
itH0a

†
k
11ale

�itH0 + J
⇤
kl
(t) eitH0a

†
l
11ake

�itH0 (3.9)

=
X

k>l

Jkl(t) (e
itH0a

†
k
e
�itH0)(eitH0ale

�itH0) + J
⇤
kl
(t) (eitH0a

†
l
e
�itH0)(eitH0ake

�itH0) (3.10)

=
X

k>l

Jkl(t) e
it(!k�!l)a

†
k
al + J

⇤
kl
(t) e�it(!k�!l)a

†
l
ak . (3.11)

For readability we introduce the short-hand !kl ⌘ !k � !l, where the BS Hamiltonian in the interaction picture is
now written as follows

UtHhop(t)U
†
t
=
X

k>l

Jkl(t) e
i!klta

†
k
al + J

⇤
kl
(t) e�i!klta

†
l
ak . (3.12)



23

By now considering the case where the modulation frequency is equal to �kl = !kl, we can expand (with ↵kl = �↵lk)

Jkl(t) = 2|Jkl| cos(!klt� ↵kl) = |Jkl|

⇣
e
i(!klt�↵kl) + e

�i(!klt�↵kl)
⌘
, (3.13)

J
⇤
kl
(t) = Jlk(t) = 2|Jkl| cos(!lkt� ↵lk) = |Jkl|

⇣
e
�i(!klt�↵kl) + e

i(!klt�↵kl)
⌘
, (3.14)

and get

UtHhop(t)U
†
t
=
X

k>l

|Jkl|

⇣
e
i↵kla

†
k
al + e

�i↵kla
†
l
ak

⌘
+ |Jkl|

⇣
e
2it!kle

�i↵kla
†
k
al + e

�2it!kle
i↵kla

†
l
ak

⌘
. (3.15)

If the coupling strength is set to a small value |Jkl| ⌧ |!k � !l|, see Ref. [14, 52], we can assume that the last term
will become highly non-resonant and fast oscillating. Therefore, it is safe to assume that the last term will e↵ectively
average out and vanish in the rotating wave approximation. This implies,

UtHhop(t)U
†
t
⇡

X

k>l

|Jkl|

⇣
e
i↵kla

†
k
al + e

�i↵kla
†
l
ak

⌘
. (3.16)

Using the same procedure, we can also approximate the TMS Hamiltonian. For this, we tune the modulation
frequencies of the squeezing interactions to �0

kl
= !k + !l ⌘ !

0
kl
, and expand

�kl(t) = 2|�kl| cos(!
0
kl
t� �kl) = |�kl|

⇣
e
i(!0

klt��kl) + e
�i(!0

klt��kl)
⌘
, (3.17)

�
⇤
kl
(t) = �lk(t) = 2|�kl| cos(!

0
lk
t� �lk) = |�kl|

⇣
e
�i(!0

klt��kl) + e
i(!0

klt��kl)
⌘
. (3.18)

After applying the RWA with |�kl|⌧ |!k + !l|, this results in

UtHsq(t)U
†
t
=
X

k>l

�kl(t) e
it(!k+!l)a

†
k
a
†
l
+ �

⇤
kl
(t) e�it(!k+!l)alak (3.19)

⇡

X

k>l

|�kl|

⇣
e
i�kla

†
k
a
†
l
+ e

�i�klakal

⌘
. (3.20)

Finally, this gives us an expression of the total time-independent Hamiltonian in the interaction picture:

Hsys ⌘ Hint =
X

k>l

|Jkl|

⇣
e
i↵kla

†
k
al + h.c.

⌘
+
X

k>l

|�kl|

⇣
e
i�kla

†
k
a
†
l
+ h.c.

⌘
. (3.21)

The Hamiltonian (3.21) is now composed of only two parts

Hsys = Hhop +Hsq . (3.22)

explicitly written out as, the beam-splitter Hamiltonian

Hhop = |J12|e
i↵12a

†
1a2 + |J31|e

i↵31a
†
3a1 + |J32|e

i↵32a
†
3a2 +H.c. , (3.23)
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FIG. 4. Couplings for the three-cavity system and the appearance of gauge-invariant phases. Here we only show one direction
for the interactions, where the complex conjugate constitutes for the opposite direction of the respective interaction. (a) In
this Figure, each pair of bosonic modes (green) al and ak is coupled via a beam-splitter interaction Jkl, allowing an excitation
to tunnel from cavity al ! ak. Since each coupling parameter Jkl has a local phase factor, an anti-clockwise closed loop
results in a non-vanishing circulator flux � ⌘ ↵12 + ↵31 � ↵32 (mod 2⇡) (teal). A clockwise loop would result in ��, since
we define anti-clockwise to be positive. Tuning this flux � results in the system being either nonreciprocal or reciprocal. (b)
Illustrated here is a single closed loop via a two-mode squeezing interaction of mode a

†
i (light blue) with either �ji to mode aj

(green) or �
⇤
ik to mode ak (green). When there is also tunneling between aj and ak, the loop closes, which results in a flux

#i ⌘ ��ik +�ji �↵kj (mod 2⇡) (teal). However, squeezing introduces a vast number of seemingly closed loops, and considering
all possible fluxes needs a more careful treatment, which is done in Sec. III B 2.

and the two-mode squeezing Hamiltonian

Hsq = |�12|e
i�12a

†
1a

†
2 + |�31|e

i�31a
†
3a

†
1 + |�32|e

i�32a
†
3a

†
2 +H.c. . (3.24)

As shown, the Hamiltonian becomes static in the rotating frame, and describes the system only by the interactions
between di↵erent resonators. These interactions in the rotating frame are now complex numbers, with a coupling
strength |Jkl| (or |�kl|), and a complex phase ↵kl (or �kl). Note, that usually complex interactions are just assumed ab
initio, in models like ours, see Ref. [1]. However, here they arise as a direct consequence of a time-modulation, which
is procedurally closer to experimental realizations. Note, that there are alternate means of constructing complex
interaction parameters, one way is by modulating the resonance frequencies of each resonator, see Ref. [14]. As
already mentioned in Sec. II B, each individual phase by itself is gauge-dependent and thus not relevant. However,
the accumulation of all individual phases into a single gauge-invariant phase is in-turn relevant, and changes the
dynamics depending on its value. Nonreciprocal transport occurs for non-trivial values of the AB phase, see Fig. 4.
Section III B 2 will talk about this more in-depth.

By introducing the short-hand notation (and suppressing the phases)

Jkl ⌘ |Jkl|e
i↵kl and �kl ⌘ |�kl|e

i�kl , (3.25)

with J
⇤
kl

= Jlk 2 C (�⇤
kl

= �lk 2 C), we can write down the system akin to a more standard beam-splitter

Hhop = J12a
†
1a2 + J31a

†
3a1 + J32a

†
3a2 +H.c. , (3.26)

and two-mode squeezing Hamiltonian

Hsq = �12a
†
1a

†
2 + �31a

†
3a

†
1 + �32a

†
3a

†
2 +H.c. . (3.27)
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In the next chapter, we will add dissipative dynamics to the coherent (and still closed) system above, and derive
equations of motion for the resonators coupled to bosonic reservoirs.

B. Dissipative three-cavity ring

1. Equations of motion for the expectation values of modes

The general goal of this section is to engineer nonreciprocal dynamics using the environment to our advantage. A
valid starting point for deriving equations of motions is given by the quantum Langevin equation (see Sec. II E 2),
where the stochastic di↵erential equation for operators can be seen as a linear process with constant di↵usion. For
this, we consider the Hamiltonian (3.22) and simply add dissipation to the Heisenberg equation. The expectation
value of the intracavity field hai(t)i can then be written as

d

dt
hai(t)i = i h[Hsys, ai(t)]i �

i

2
hai(t)i , (3.28)

where the first term is the coherent evolution and the second term is the dissipation due to the coupling to a local
bosonic reservoir. Here, the expectation value of a system operator ai is given by the trace

haii = Tr {ai⇢} , (3.29)

with system state ⇢. Equation (3.28) describes the full coherent and dissipative dynamics, see Fig. 5. This approach
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FIG. 5. Couplings for the three-cavity system, where each mode ai (a
†
i ) is dissipatively coupled to a local reservoir with strength

i. (a) A closed loop with only BS interactions, resulting in a gauge-invariant phase �. (b) Shown is a single possible closed
loop due to TMS between modes a

†
j and aj (resp. a

†
j and ak), and a single BS interaction between resonators aj and ak,

resulting in a phase #i.

gives us the following di↵erential equations for the expectation values

hȧ1i = �
1

2
ha1i � iJ12 ha2i � iJ

⇤
31 ha3i � i�12 ha

†
2i � i�31 ha

†
3i , (3.30a)

hȧ2i = �
2

2
ha2i � iJ

⇤
12 ha1i � iJ

⇤
32 ha3i � i�12 ha

†
1i � i�32 ha

†
3i , (3.30b)

hȧ3i = �
3

2
ha3i � iJ31 ha1i � iJ32 ha2i � i�31 ha

†
1i � i�32 ha

†
2i , (3.30c)
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where we suppressed the explicit time-dependence of the operators for readability. This approach recovers the same
result one would get using the Lindblad master equation. In general, we also have the adjoint counterparts for the
equations of motion above. It is useful to understand what these equations of motion describe: A mode haki is driven
by mode hali in two distinct ways: Either by a BS interaction with amplitude Jkl, or a TMS interaction via the adjoint
mode ha†

l
i and amplitude �kl. This implies, that setting �kl = 0, decouples the dynamics of modes from the dynamics

of adjoint modes. Therefore, it becomes completely su�cient to only consider one set of di↵erential equations (either
of modes ha1i , ha2i , ha3i or their respective adjoints), for a full treatment. This three-mode model without squeezing
will be denoted as the dissipative ring. The adjoint equations encode the same amount of information and describe
the same (but opposite) dynamics. In the next chapter we will understand how Aharonov-Bohm like gauge-invariant
phases arise, and how these equations of motion can be re-expressed in terms of these phases.

2. Expressing the system in terms of synthetic fluxes

Suppose, an excitation wants to propagate from a certain cavity to another. The excitation can then take several
di↵erent paths to reach that other cavity. However, if the excitation traverses the system and ends up again in its
original cavity, the path closes to a loop. All individual phases in that loop accumulate to a single unified Aharonov-
Bohm-like phase. We will sometimes denote this phase as the circulator flux/phase hereafter. When this phase
acquires a specific value, it will enforce a preferred direction of transport, due to destructive interference in the opposite
direction, see Sec. III F. Consequently, the probability of a mode travelling the reverse direction becomes zero, resulting
in a circulating vortex-like current of modes. The system reaches a limiting regime, where directional transport is
protected by this circulator phase. Note that transport is then either unidirectional or amplified. Therefore, we
must develop a method to identify all non-trivial loops within this system. Naturally, the following question arises:
“When do we consider a closed loop to be non-trivial?” This question is not always easy to answer, as isolating
phases becomes increasingly di�cult for systems with many pathways. Nonetheless, the geometry of the system
introduces constraints, which helps us to simplify the problem. These constraints yield a general assertion, that is,
an enclosed loop is considered non-trivial if either (or both) of the following statements hold: 1. Individual phases
on the enclosed path do not trivially cancel each other out (i.e. arg(J12�⇤12J

⇤
12�12) = 0, which resembles the closed

path a2 ! a1 ! a
†
2 ! a

†
1 ! a2). 2. A circulator phase cannot be written as the sum of remaining circulator phases.

Knowing all relevant phases is immensely useful for understanding the limiting cases and also the system-behaviour
of in-between values. Thus, the ultimate goal of this Section is to re-express the equations of motion in terms of
gauge-invariant phases.

Since our system with three modes has only six possible pathways, isolating all phases becomes straightforward by
expressing the couplings as a (complex) directed graph, consider Fig. 6 (a). Notice, that only one direction for
each coupling is shown, since conjugated amplitudes would just give us the same circulator phases with an opposite
sign. For readability, we have also suppressed losses in this picture, which are implicitly assumed. By counting all
non-trivial loops, we find three distinct phases

�
def
= arg(J12J31J

⇤
32) ⌘ +↵12 + ↵31 � ↵32 (mod 2⇡) , (3.31a)

#1
def
= arg(�12�

⇤
31J32) ⌘ +�12 � �31 + ↵32 (mod 2⇡) , (3.31b)

#2
def
= arg(�⇤12J

⇤
31�32) ⌘ ��12 � ↵31 + �32 (mod 2⇡) , (3.31c)

where anti-clockwise phases are always defined to be positive. As mentioned earlier, the loop a
†
1 ! a2 ! a1 ! a

†
2 ! a

†
1

vanishes and constitutes no new phase. Thus, one of the phases bordering that path is simply composed of the
remaining phases and inherits no additional information. Note, that which phase we choose to express by other
phases is just a matter of convention. Here we keep �, #1 and #2. Plaquette a

†
1 ! a3 ! a

†
2 ! a

†
1 and its complex

conjugate then has the phase �(�+#1+#2). However, this logic holds true for all cases, as each phase of a plaquette is
just the negative sum of enclosing phases, i.e. plaquette a†2 ! a3 ! a1 ! a

†
2 gives us: #2 = �(�+#1� (�+#1+#2)).

By a closer examination of Fig. 6 (a) it can also be understood as holographic projection of a (twisted) platonic
octahedron, see Fig. 6 (b). To ensure a consistent sign convention of phases, we define that anti-clockwise phases on
the surface of the octahedron are positive. For legibility, we suppressed losses and only show the directionality for BS
couplings. Notice, that without squeezing, only two decoupled triangles of either modes or adjoints remain, where
both are the same up to time-reversal. The only prevailing phase is then �, and as mentioned above, it becomes
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FIG. 6. Geometric representations of the three mode model and its couplings. Losses are not shown and implicitly assumed.
(a) Coupling scheme sketching all gauge-invariant phases, where only a single direction is shown for each edge. The isolated
phases are �, #1 and #2. Anti-clockwise phases are positive. One plaquette-pair can be expressed by other phases enclosing it,
as �(�+#1+#2). Each phase of a plaquette is the negative sum of enclosing phases. (b) Abstract representation of couplings as
an octahedron. Anti-clockwise phases on the outside are positive. The only directions shown are for BS interactions. Without
squeezing, the system reduces to two disconnected triangles, where each is just the time-reversed version of the other. Edges
on opposites show the same coupling.

completely su�cient to describe the system using only one triangle. Removing other couplings also yields decoupled
triangles, but here modes and adjoints can still interact. This abstract representation substantially simplifies the
identification of relevant phases, and can be (painfully) generalized for more extensive systems. For reduced models
with fewer couplings, this representation is especially handy, since it becomes immediately clear which phases remain.
This suggests an intriguing direction for future research, o↵ering the possibility to uncover a clear correspondence
between the physical properties of a given system and its geometric structure within this discrete “coupling space”,
since the geometric representation can be understood as a complex directed graph (this is called a digraph, see Ref.
[53]).

Now, we are fully equipped to express the equations of motion using these fluxes. First, consider a general gauge
transformation with phases �j - yet to be determined, as

haji ! haji e
i�j . (3.32)

The equations of motion (3.30) then become

hȧ1i = �
1

2
ha1i � i

⇣
|J12|e

i(↵12+�2��1) ha2i+ |J31|e
�i(↵31��3+�1) ha3i+ |�12|e

i(�12��2��1) ha
†
2i+ |�31|e

i(�31��3��1) ha
†
3i

⌘
,

hȧ2i = �
2

2
ha2i � i

⇣
|J12|e

�i(↵12+�2��1) ha1i+ |J32|e
�i(↵32��3+�2) ha3i+ |�12|e

i(�12��2��1) ha
†
1i+ |�32|e

i(�32��3��2) ha
†
3i

⌘
,

hȧ3i = �
3

2
ha3i � i

⇣
|J31|e

i(↵31��3+�1) ha1i+ |J32|e
i(↵32��3+�2) ha2i+ |�31|e

i(�31��3��1) ha
†
1i+ |�32|e

i(�32��3��2) ha
†
2i

⌘
.

(3.33)
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Note, that six arguments inside the exponentials are just conjugates of others. Thus, an appropriate transformation
can be found by only considering six arguments. However, we also have an additional constrain: There are only three
gauge-invariant phases. And since they are the only physically relevant ones, three additional arguments can be set
to zero. This gives us a set of closed and solvable algebraic equations. Note, that this choice is not unique. However,
since an additional gauge-transformation is always applicable, the physics of the system remain invariant upon our
choice (see Appendix B 1 for more). Hence, we choose to transform Eq. (3.33) using

�1 =
�32 + ↵32

2
� ↵31 , �2 =

�32 � ↵32

2
, �3 =

�32 + ↵32

2
, (3.34)

which eventually leads to

hȧ1i = �
1

2
ha1i � i|J12|e

i�
ha2i � i|J31| ha3i � i|�12|e

�i#2 ha
†
2i � i|�31|e

�i(#1+#2) ha
†
3i ,

hȧ2i = �
2

2
ha2i � i|J12|e

�i�
ha1i � i|J32| ha3i � i|�12|e

�i#2 ha
†
1i � i|�32| ha

†
3i ,

hȧ3i = �
3

2
ha3i � i|J31| ha1i � i|J32| ha2i � i|�31|e

�i(#1+#2) ha
†
1i � i|�32| ha

†
2i ,

(3.35)

as the new equations of motion written in terms of circulator fluxes, with

J12 = |J12|e
i�

, J31 = |J31| , J32 = |J32| ,

�12 = |�12|e
�i#2 , �31 = |�31|e

�i(#1+#2) , �32 = |�32| .
(3.36)

For �ij = 0, it is immediately clear how the asymmetric coupling between the resonators ha1i and ha2i is expressed
by the sign of the flux �. Thus, a non-symmetric coupling between mode 1 and 2 can only occur i↵

J12 6= J
⇤
12 , (3.37)

is fulfilled, which is analogous to

Im(J12) = |J12| Im(ei�) 6= 0 =) � /2 {0,±⇡} (mod 2⇡) . (3.38)

Thus, any non-symmetric transport between 1 and 2 needs a non-zero imaginary part for the BS interaction J12. Even
though this is a good first step, it is not at all su�cient for understanding nonreciprocity in our system. For this, we
will consider a reduced two-port e↵ective model, where both modes are coupled to the same e↵ective reservoir, based
on Ref. [1]. The reduced model can be seen as a limiting case of the three-mode system and clearly demonstrates how
a resonator can be (partially or fully) decoupled from the dynamics of another, yielding the desired nonreciprocity.

As a small remark, it should be possible to find the exact number of gauge-invariant phases for a general bilinear
system with N - modes. However, this seems like a challenging task. At least, the number of couplings can be fully
determined, see Appendix B 2. This could give a hint at the exact number of non-trivial phases for any system.

Before jumping into the reduced model, we will make a small detour and introduce the Bogoliubov-de-Gennes (BdG)
formalism for bosonic systems. This will not only make subsequent calculations more general but also more concise.
However, this treatment needs a more careful and nuanced approach. Thus, the following can be seen as a technical
toolkit for whats coming.
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3. Properties of quadratic Bogoliubov-de-Gennes Hamiltonians

The Bogoliubov-de-Gennes formalism is a powerful tool for describing systems in which the dynamics of creation
and annihilation operators are not completely decoupled but can influence each other. Historically, this formalism
emerged to solve the many-body equation of motion in superconducting systems, see Refs. [54, 55], to appropriately
diagonalize the Hamiltonian. However, this formalism has since been generalized to a wide range of systems - most
famously with the introduction of quadrature operators in quantum optics. In this section, we will focus on some
general, yet useful aspects of bosonic BdG Hamiltonians (which are often simply called “quadratic Hamiltonians”
[55]).

To express the equations of motion for the whole system at once, we introduce a vector with annihilation/creation
operators (for a general number of cavity modes N)

a ⌘ (â1, . . . , âN , â
†
1, . . . , â

†
N
)T , (3.39)

where we use the convention that the adjoint vector

a
†
⌘ (â†1, . . . , â

†
N
, â1, . . . , âN ) , (3.40)

is a row vector, whose entries are the adjoints of original entries.

a. The bosonic BdG Hamiltonian.

Before we can introduce the BdG Hamiltonian, we need to devise an expression for the commutator of non-Hermitian
vectors [ai,a

†
j
]. However, since the adjoint vector is defined as a row vector, this convention introduces an important

nuance: How do we calculate expressions of the form a
†
a, where the desired result should be a matrix and not a

scalar? For technical details regarding this question, consider Appendix B 3, where consistent algebraic rules are
introduced. However, we reveal the main result here, as this will be used heavily in subsequent chapters. For this, we
define a column vector of adjoint elements

a
‡
⌘ ⇤xa = (â†1, . . . , â

†
N
, â1, . . . , âN )T , (3.41)

where ⇤x = �x ⌦ 11N is an extended Pauli-matrix, permuting elements inside the vector a. Note, that we also
introduced the new symbol ‡ for readability, which acts only at the level of elements and does not transpose the
original vector. Using this, we find

a
†
a =

�
a
‡
a
T
�T

, (3.42)

with the commutation relations

[ai,a
†
j
] = (⇤z)ij , ⇤z =

✓
11N 0
0 �11N

◆
= �z ⌦ 11N , (3.43)

and

[ai,aj ] = i(⇤y)ij , i⇤y =

✓
0 11N
�11N 0

◆
= i�y ⌦ 11N , (3.44)
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where ⇤z is also an extended Pauli matrix. The matrix i⇤y 2 Sp(2N,R) is a symplectic form ⌦ = i⇤y and also an
element of the the symplectic group [40], which is defined as the set Sp(2N,R) =

�
A 2 A2N⇥2N (R) : AT

⌦A = ⌦
 
.

Consequently, we can express the (second quantized) system Hamiltonian in the BdG-form

Hsys =
X

i,j

a
†
i
Hij aj , (3.45)

with the Hamiltonian matrix

H(�,#1,#2) =

✓
h1(�) h2(#1,#2)

h
⇤
2(#1,#2) h

⇤
1(�)

◆
⌘ H =

✓
h1 h2

h
⇤
2 h

⇤
1

◆
, (3.46)

where h
†
1 = h1 is hermitian and h

T

2 = h2 is symmetric. The submatrices for our system with N = 3 modes are given
by

Hhop = a
†
✓
h1 0
0 h

⇤
1

◆
a , with h1 =

0

@
0 J12 J

⇤
31

J
⇤
12 0 J

⇤
32

J31 J32 0

1

A , (3.47)

Hsq = a
†
✓

0 h2

h
⇤
2 0

◆
a , with h2 =

0

@
0 �12 �31

�12 0 �32

�31 �32 0

1

A , (3.48)

which encode the coherent beam-splitter and squeezing interactions, respectively. To understand the properties of
this representation of the system, let us first consider a closed system. In this case, we need to find an expression for
the commutator in the Heisenberg equation of motion, which is given by

i[H,a] = i

✓
�h1 �h2

h
⇤
2 h

⇤
1

◆
a = �i⇤zHa . (3.49)

Here we call

A ⌘ �i⇤zH , (3.50)

the dynamical matrix of the closed system, which is pseudo-Hermitian for bosonic systems [40, 56]

1. A = ⇤xA
⇤
⇤x () A

T = ⇤xA
†
⇤x , (3.51a)

2. A = �⇤zA
†
⇤z , (3.51b)

where both relations can be seen as the pseudo-Hermiticity of our dynamical matrix A. The first relation basically
states that A and its complex conjugate are the same up to a permutation of blocks inside A. This is the most
important relationship for us and will give us intuition for the observed scattering behaviour of the system. The
second condition directly relates the dynamical matrix to its adjoint via ⇤z, yet flips the sign, this can be roughly
understood as a condition which stems from the commutator relation in Eq. (3.43). Nonetheless, we can relate A to
its adjoint A† via the anti-commutator of H and ⇤z in a slightly di↵erent way

A = A
†
� i{H,⇤z} = A

†
� i 2⇤z(h1 � h

⇤
1) . (3.52)
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It follows, for the commutator

A = �A† + i[H,⇤z] = �A
† + 2⇤y(h

⇤
2 � h2) , (3.53)

where the prior equation implies that the dynamical matrix for the closed system becomes Hermitian when no beam-
splitter interaction is present, and the latter is a bit more abstract but will become important for the three-mode
system without TMS. Here, we used the direct sum defined as hi � h

⇤
i
⌘ diag(hi,h

⇤
i
), and ⇤y = �i⇤z⇤x. For

completeness, both statements can also be summed up as

A =
i

2
([H,⇤z]� {H,⇤z}) , (3.54)

For now, this concludes our considerations of the closed system. Formally speaking, this system can be solved in
several ways, however, we will only do this for the case without squeezing, see Sec IIIG 1. We now move on to open
system dynamics.

b. Extension of the BdG formalism to open systems.

The quantum Langevin equation of expectation values can be written as

d

dt
ha(t)i = i h[H,a(t)]i �

1

2
K̃ ha(t)i , (3.55)

where K̃ = 112 ⌦ diag(1, . . . ,N ) is a matrix of dissipative couplings i. In a more concise manner we can write

d

dt
ha(t)i = D ha(t)i , (3.56)

where

D ⌘ A�
1

2
K̃ = �i⇤zH�

1

2
K̃ , (3.57)

is the new dynamical matrix of the open system. Note that the dynamical matrix can become time-dependent, which
will be important for the e↵ective model when we introduce an explicitly time-dependent e↵ective damping rate. This
matrix still fulfills some of the features introduced above, yet behaves di↵erently in others. For brevity, we state only
the most useful properties. Consider the adjoint

D
† = A

†
�

1

2
K̃ , (3.58)

where we try to express the same pseudo-Hermiticity relations as before

1. D = ⇤xD
⇤
⇤x () D

T = ⇤xD
†
⇤x , (3.59a)

2. D = �⇤zD
†
⇤z � K̃ , (3.59b)
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yet we find that the dynamical matrix with dissipation is not even pseudo-Hermitian in general, which coincides nicely
with Ref. [55]. However, we can also find an expression similar to Eq. (3.52) with D

†
�D = A

†
�A. From that, it

follows

D = D
†
� i{H,⇤z} = D

†
� i 2⇤z(h1 � h

⇤
1) , (3.60)

where we observe the same consequences as for the closed system: Without a beam-splitter interaction, the dynamical
matrix becomes Hermitian, regardless of any dissipation. This is di↵erent for the commutator

D+D
† = i[H,⇤z]� K̃ (3.61)

compared to Eq. (3.53), where we used Eq. (3.58). This implies that the damping adds up after reversal, and we get
the useful result

D = �D†
� K̃+ i[H,⇤z] = �D

†
� K̃+ 2⇤y(h

⇤
2 � h2) , (3.62)

see Appendix C 3 for how this expression can be used. All this can again be summed up as

D =
i

2
([H,⇤z]� {H,⇤z}+ iK̃) , (3.63)

C. Quadrature representation

In this part, we will introduce the quadrature basis of the optical phase space, since a cavity i driven by two-mode
squeezing couples haii with ha

†
j
i as evident by the dynamical matrix of Eq. (3.50). In presence of squeezing, the system

can be described either in terms of mode or quadrature operators. Depending on the case at hand, one representation
can become more useful than the other. Without squeezing, the matrix becomes block-diagonal and it is enough
to just consider one block for the full dynamics of the system. However, the quadrature also accounts for non-zero
o↵-diagonal blocks.

Here, we introduce position and momentum quadratures

x̂i(t) =
1
p
2

⇣
â
†
i
(t) + âi(t)

⌘
, p̂i(t) =

i
p
2

⇣
â
†
i
(t)� âi(t)

⌘
, (3.64)

and note that we can also re-express the creation/annihilation operators by their quadratures as

âi(t) =
1
p
2
(x̂i(t) + ip̂i(t)) , â

†
i
(t) =

1
p
2
(x̂i(t)� ip̂i(t)) . (3.65)

These new operators fulfill the following equal-time commutation relations

8t : [x̂i(t), p̂j(t)] = i�ij , [x̂i(t), x̂j(t)] = [p̂i(t), p̂j(t)] = 0 , (3.66)

which are the canonical commutation relation of momentum and position quantum operators. As a next step, we
transform the vector from Eq. (3.39) into the quadrature basis using the convention
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v(t) = (x1(t), p1(t), . . . , xN (t), pN (t))T , (3.67)

fulfilling the commutation relation

[vi,vj ] = i⌦ij , with ⌦ =
NM

k=1

✓
0 1
�1 0

◆
= 11N ⌦ i�y , (3.68)

where ⌦ 2 Sp(2N,R) is a symplectic form (in a di↵erent basis compared to the form introduced earlier), see Ref. [40].
To change from mode to quadrature operators, we can find an unitary transformation matrix T between the bases
(for N = 3 in our case)

v(t) =

0

BBBBB@

x1(t)
p1(t)
x2(t)
p2(t)
x3(t)
p3(t)

1

CCCCCA
=

1
p
2

0

BBBBB@

1 0 0 1 0 0
�i 0 0 i 0 0
0 1 0 0 1 0
0 �i 0 0 i 0
0 0 1 0 0 1
0 0 �i 0 0 i

1

CCCCCA

0

BBBBBB@

a1(t)
a2(t)
a3(t)
a
†
1(t)

a
†
2(t)

a
†
3(t)

1

CCCCCCA
⌘ Ta(t) , (3.69)

which is composed of a rotation and a permutation. Note, the permutation aspect for N modes is not straightforward,
consider Appendix B 4 for more. By using T, we can transform the dynamical matrix D of Eq. (3.57) to the
quadrature-representation and get

M ⌘ TDT
†
. (3.70)

The dynamical matrixM describes the open system in the quadrature basis. Here we make an important remark about
the convention used for distinguishing the bases: Every variable with a ·̃ - symbol will be in the mode-representation
(except for distinct names like D and M etc.), i.e. the matrix encoding dissipation simply becomes K = TK̃T

† in
the quadrature representation.

The Langevin equation in the quadrature basis is then

d

dt
hv(t)i = M hv(t)i . (3.71)

Here, the dynamical matrix is always real and time-independent for the full model (all possibly complex couplings
are now real). This is important to mention, as the dynamical matrix is not always real or time-independent for an
e↵ective model. The explicit representation of M of our three-mode system can be found in Appendix B 5.

D. Heisenberg-Langevin equation in frequency space

To understand the reason why we permute and not just simply dagger the elements of the mode vectors above, take
the Fourier-transform of time-dependent operators: Remember, that equal-time commutation relations of (system)
creation/annihilation operators are unit-less quantities

[ai(t), a
†
j
(t)] = �ij =) [ai(t),a

†
j
(t)] = (⇤z)ij ,
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By simply Fourier-transforming, it follows

ai(t)
F
�! ai[!] , a

†
i
(t)

F
�! a

†
i
[!] , (3.72)

where the latter is the Fourier-transform of the daggered mode. However, since we defined the Fourier-transform s.t.
(f [!])† = f

†[�!] holds, we cannot simply transform and then dagger the elements, as this would flip the sign of !.
In short this implies

(a[!])‡ = ((a[!])†)T = (a†[�!])T = a
‡[�!] . (3.73)

Thus, ‡ transforms just like † in frequency space with

a
†[!] = (a[�!])† , a

‡[!] = (a[�!])‡ . (3.74)

By using Eq. (2.45) we get the EOMs in frequency space via

F

n
ȧi(t)

o
[!] = i! ai[!] and F

n
ȧ
†
i
(t)
o
[!] = i! a

†
i
[!] =) i! a[!] = Da[!] , (3.75a)

F

n
ẋi(t)

o
[!] = i! xi[!] and F

n
ṗi(t)

o
[!] = i! pi[!] =) i! v[!] = Mv[!] . (3.75b)

This concludes our considerations regarding the BdG-formalism, which gives us a toolkit for understanding when the
system will become nonreciprocal, and how to find expressions for the S-matrix or the output-noise spectral density.

E. Reservoir engineering and the nonreciprocal two-mode model

a1

1, in

1, out

a2

2, out

2, in

Hcoh

1 2

�0

e↵. bath

(a)

a1
1, in

a2

2, out

2, in

Hcoh

1 2

�R

e↵. bath

(b)

FIG. 7. Schematic illustrating (non)reciprocity in the e↵ective model. Each resonator has a single input and output wave guide.
Both are coherently coupled by Hcoh. However resonators 1 and 2 are also dissipatively coupled through the e↵ective reservoir
“e↵ bath”. Nonreciprocity appears by balancing out coherent with dissipative interactions. (a) Reciprocal limit. Here, the
flux is trivially set to � = �0 = 0 (see Eq. (3.103)). (b) Nonreciprocal case. For any other value of � 6= �0, there is unequal
and nonreciprocal transport. For � = �R = ⇡/2 (exactly a quarter flux quantum, see Eq. (3.102)), the system reaches the
unidirectional limit. In that limit, input from 1 is fully transmitted to output 2, but input from port 2 is completely dissipated
by the e↵ective reservoir and never reaches 1.

The whole idea behind the paper of Metelmann and Clerk [1] was to construct a nonreciprocal two-mode model, with-
out relying on a pre-engineered nonreciprocal reservoir. In their own words, the approach uses reservoir engineering,
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“where a structured dissipative environment generates useful quantum behaviour” (taken from Ref. [1]). For this, a
strongly damped auxiliary resonator is coupled to two other resonators and causes an e↵ective dissipative interaction
between them. The two resonators are coherently coupled (via a BS or TMS interaction), but also dissipitavely to the
e↵ective reservoir. The recipe is then simple: By balancing out the coherent and dissipative interactions, destructive
interference in one direction breaks reciprocity, see Fig. 7. This allows for nonreciprocal transport, since one cavity
decouples from the other in a single direction, i.e. cavity 1 can drive 2, but not vice versa. In principle, this model
can be assumed ab initio by choosing a corresponding jump operator of the shared reservoir using the Lindblad
master equation. We approach this by eliminating the third resonator from the three-mode system, which acts as the
auxiliary mode. To accomplish this, the auxiliary’s dynamical timescales must be significantly di↵erent from those
of the rest of the system. A strongly damped auxiliary 3 � 1,2 will have a decreased relaxation time ⌧3 = 1/3.
And in this timescale, excitations entering the auxiliary will dissipate faster than they can re-enter other resonators -
and the auxiliary reaches steady state. If any transport from port 1 to 2 behaves di↵erently from reversed reciprocal
process, namely from 2 to 1, the system becomes nonreciprocal. This in-turn violates the unitarity of the scattering
matrix in this minimal (e↵ective) model.

1. Markovian e↵ective model via adiabatic elimination - the brute force way

The auxiliary mode can be eliminated in multiple ways. We compare two di↵erent approaches, 1. Adiabatically
eliminating the auxiliary, and 2. Fourier transforming the equations of motion and eliminating the auxiliary thereafter.
The first approach is simpler, but any additional knowledge of the auxiliary is lost, since it reaches steady-state. Thus,
we call this the “brute force way”. Even though the second approach is harder to compute, it retains the frequency-
information of the auxiliary. Implying, that not only does this approach give us a glimpse at the dynamical properties
of the auxiliary, it is also treated equal to other modes. We will call this the “gentle way” of eliminating. As it will
turn out at the end of both derivations, the first procedure leads to a Markovian e↵ective reservoir, where the second
procedure leads to a non-Markovian reservoir. Subsequently, we start with the adiabatic elimination.

As mentioned earlier, the decay rate of the auxiliary is assumed to be the dominant parameter 3 � 1,2, Jij ,�ij .
Thus, the correlation time ⌧ ⌘ 1/1 ⇡ 1/2, is significantly longer compared to the correlation time of the auxiliary
⌧3 ⌧ ⌧ . Thus, the auxiliary becomes quasi-static from the rest of the system and reaches steady state hȧ3i = 0 at
long times. Using this, we can insert the steady state solution of the third cavity

ha3i =
2

3
(�iJ31 ha1i � iJ32 ha2i � i�31 ha

†
1i � i�23 ha

†
2i) , (3.76)

into the equations of motion for the remaining two resonators, giving us

hȧ1i =


�
2(|J31|2 � |�31|

2)

3
�
1

2

�
ha1i � i


J12 + i

✓
2(�31�⇤32 � J32J

⇤
31)

3

◆�
ha2i � i


�12 + i

✓
2(�31J⇤

32 � �32J
⇤
31)

3

◆�
ha

†
2i ,

hȧ2i =


�
2(|J32|2 � |�32|

2)

3
�
2

2

�
ha2i � i


J
⇤
12 + i

✓
2(�⇤31�32 � J

⇤
32J31)

3

◆�
ha1i � i


�12 � i

✓
2(�31J⇤

32 � �32J
⇤
31)

3

◆�
ha

†
1i .

(3.77)

By introducing some useful abbreviations

J := J12 , � := �12 , �0 :=
4

3
|J |

2
, �j := �0(|uj |

2
� |vj |

2) ,

uj :=
J3j

J
, vj :=

�3j

J
, µ := v1v

⇤
2 � u2u

⇤
1 , ⌫ := v1u

⇤
2 � v2u

⇤
1 ,

(3.78)

Eq. (3.77) precisely resembles the same result given by Metelmann and Clerk [1]
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hȧ1i = �
�1 + 1

2
ha1i � i


J + iµ

�0
2

�
ha2i � i


�+ i⌫

�0
2

�
ha

†
2i , (3.79a)

hȧ2i = �
�2 + 2

2
ha2i � i


J
⇤ + iµ

⇤�0
2

�
ha1i � i


�� i⌫

�0
2

�
ha

†
1i . (3.79b)

These equations tell us already a lot about the dynamics of the system. The first term in both equations is a modified
damping rate: Each resonator i is coupled to its own local reservoir i, and additionally to the shared reservoir with
�0, scaled by the probability di↵erence |uj |

2
� |vj |

2. This encodes how probable a decay to the e↵ective reservoir
is. The second and third terms describe how each mode is driven by the other mode. This can happen in multiple
ways, either coherently (J or �), or dissipatively with the non-local reservoir (µ�0/2 or ⌫�0/2). Balancing these
distinct interaction pathways alters the symmetry in the way modes drive each other. To understand this, we dismiss
the third term, and focus only on the second term: By setting J = �iµ�0/2, the second term of the first equation
vanishes, where the same term of the second equation attains a higher value. In this case, hȧ1i is not influenced by ha2i
anymore, but hȧ2i is driven by ha1i. This is a fully unidirectional limit and immediately shows how nonreciprocity is
attainable. So what is the reason we observe this behaviour? If we compare the second and third term of hȧ1i to the
respective terms of hȧ2i, we see something surprising: The terms are almost complex conjugates of each other - the
only di↵erence being the sign of the imaginary unit i in-front of dissipative interactions. Thus, coherent interactions
becoming imaginary yield an asymmetry. This coincides perfectly with our considerations about the gauge-invariant
phases before, as non-trivial values of the phases imply imaginary interactions. A trivial value will always lead to
fully real interactions parameters and can thus not enforce nonreciprocity in this model. A more in-depth discussion
about di↵erent limits can be found in Section III F.

2. Non-Markovian e↵ective model via elimination by Fourier transforming - the gentle way

Contrary to the first elimination procedure, the auxiliary will be treated the same way as other modes. This will
give us non-Markovian corrections to the adiabatically eliminated two-mode model. Consider the way we defined the
Fourier transform in Sec. IID. By using Eq. (2.45) (and (2.42) for adjoint modes), we can transform the equations
of motion (3.30) to frequency space. Solving the third mode gives us

ha3[!]i =
1

i! + 3/2

⇣
�iJ31 ha1[!]i � iJ32 ha2[!]i � i�31 ha

†
1[!]i � i�32 ha

†
2[!]i

⌘
. (3.80)

Analogously to the adiabatic elimination, this solution is inserted into the remaining equations. This gives us a set
of algebraic equations in frequency space. The equation for the first mode is then

i! ha1[!]i =�


|J31|

2
� |�31|

2

i! + 3/2
+
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2

�
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
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32 � J32J

⇤
31
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32 � �32J

⇤
31
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◆�
ha

†
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(3.81)

And analogously for the second mode

i! ha2[!]i =�


|J32|

2
� |�32|

2

i! + 3/2
+
2

2

�
ha2[!]i

� i


J
⇤
12 + i

✓
�
⇤
31�32 � J

⇤
32J31

i! + 3/2

◆�
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�12 � i

✓
�31J

⇤
32 � �32J

⇤
31

i! + 3/2

◆�
ha

†
1[!]i .

(3.82)
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By introducing similar abbreviations to the adiabatic procedure

J := J12 , � := �12 , �[!] :=
2

i! + 3/2
|J |

2
, �j [!] := �[!](|uj |

2
� |vj |

2) ,

uj :=
J3j

J
, vj :=

�3j

J
, µ := v1v

⇤
2 � u2u

⇤
1 , ⌫ := v1u

⇤
2 � v2u

⇤
1 ,

(3.83)

we see how the e↵ective damping rate �[!] is now an ! - dependent, generalized exchange rate between each resonator
and the e↵ective reservoir. On resonance, the exchange rate simply reduces to the Markovian damping rate

lim
!!0

�[!] = �0 . (3.84)

The introduced abbreviations are especially useful, since they yield a set of equations with a similar structure as for
the elimination before:

i! ha1[!]i =�


�1[!] + 1

2

�
ha1[!]i � i


J + iµ

�[!]

2

�
ha2[!]i � i


�+ i⌫

�[!]

2

�
ha

†
2[!]i , (3.85a)

i! ha2[!]i =�


�2[!] + 2

2

�
ha2[!]i � i


J
⇤ + iµ

⇤�[!]

2

�
ha1[!]i � i


�� i⌫

�[!]

2

�
ha

†
1[!]i . (3.85b)

Note, these equations can also be expressed in the BdG-form

i! hae↵ [!]i = De↵ [!] hae↵ [!]i , (3.86)

with the basis

ae↵ = (a1, a2, a
†
1, a

†
2)

T
. (3.87)

Here, the dynamical matrix De↵ [!] is explicitly frequency dependent and thus possibly complex (see Appendix B 6
for the expression), which is strikingly di↵erent to the behaviour of the full model. This can also be decomposed into
a dynamical matrix of the isolated system and a damping matrix with De↵ [!] = Ae↵ [!] � K̃e↵ [!]/2. The damping
matrix now encodes local and global reservoirs K̃e↵ [!] = diag(�1[!] + 1,�2[!] + 2,�⇤1[!] + 1,�⇤2[!] + 2). In the
quadrature representation, the dynamical matrix has now possible complex entries due to the ! dependency, which is
also di↵erent compared to the full model. To transform De↵ [!] to the quadrature basis, we apply ve↵ [!] = Te↵ ae↵ [!]
with the truncated transformation matrix

Te↵ =
1
p
2

0

B@

1 0 1 0
�i 0 i 0
0 1 0 1
0 �i 0 i

1

CA . (3.88)

This gives us

Me↵ [!] ⌘ Te↵ De↵ [!]T
†
e↵ , (3.89)
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as the sought out Langevin matrix (the explicit form can be found in Appendix B 7) with the EOM for the quadrature
basis

i! hve↵ [!]i = Me↵ [!] hve↵ [!]i . (3.90)

Although the equations of motion are similar to the adiabatic limit, there is a stark di↵erence: The e↵ective damping
rate is now frequency dependent. To illustrate this, we can understand i�[!] as a susceptibility in analogy to a complex
refractive index n�. For this, we make this expression unit-less by normalizing it with

p
3/4|J |2 (Note that it is

closely related to the the impedance matching condition, see Sec. IVC). It follows,

n�[!] ⌘

p
3

4|J |2
(i�[!]) =

i

p
3/

i2!/+ 3/
=

(2!/)
p
3/

(2!/)2 + (3/)2| {z }
Ren�

+i
(3/)

p
3/

(2!/)2 + (3/)2| {z }
Imn�

, (3.91)

where the dispersion of waves upon entering the reservoir is proportional to the real part of the refractive index, while
the absorption is proportional to the imaginary part. In this analogy, the probability of an excitation to couple to
the e↵. reservoir is a Lorentzian shaped distribution

|n�[!]|
2 =

3/

(2!/)2 + (3/)2
, (3.92)

with a HWHM = 3/, see Fig. 8. For the Markovian case, the distribution would just be a flat band in frequency

FIG. 8. Lorentzian shaped coupling probabil-
ity |n�[!]|2 (normalized for 3/ = 1) for the non-
Markovian reservoir depending on !. The distribution
is shown for varying rates 3. It has a HWHM = 3/,
and becomes maximal at resonance (! = 0). The
Markovian limit with lim!!0 �[!] = �0 = 4|J |2/3

leads to flat bands and an frequency-independent re-
sponse of the reservoir to incident light, with the max-
imal value of the distribution. Moreover, it converges
to the Markovian result for high 3 and becomes con-
stant. The opposite happens for low 3, where the
auxiliary almost always correlates with the rest of the
system. Thus, for low 3, the auxiliary becomes an in-
tegral part of the coherent dynamics, which cannot be
simply treated as a reservoir.

space, since it is independent of frequency. This changes however in the non-Markovian case, because the e↵ective
reservoir has now a narrow frequency band where it can respond to incoming excitations. Here, ! is the response
frequency of the reservoir and 3 can be seen as the linewidth of this non-Markovian reservoir. As shown in Fig. 9,
non-Markovian corrections with finite !, imply a reduced response of the auxiliary to incident light. The support of
the distribution vanishes for high frequencies, e↵ectively acting as a band-pass filter. Furthermore, there is a clear
phase dependence in the dispersion of n�[!], which is negative for ! < 0 and positive for ! > 0. The absorption
broadens for growing values of 3, implying that it converges to the Markovian case for high 3, resembling the
adiabatic limit. However, for low 3 this situation changes: The auxiliary correlates with the rest of the system only
in a narrow band and becomes dynamically active. It is then part of the coherent dynamics and cannot be viewed as
a simple reservoir anymore.

Next, we can check if the Markovian limit can be recovered for the equations of motion. For this we take the inverse
Fourier transform, which is a bit more tricky. First, consider
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FIG. 9. Dispersion and absorption of n�[!] for di↵erent damping rates 3. Here the real part of n�[!] describes the dispersion
(left) and the imaginary part the absorption (right) behaviour of the auxiliary. Finite ! changes the response of the auxiliary
to incoming waves, where the absorption drops for finite frequencies. The dispersion behaves like a typical dispersion of light-
matter interactions, where there is a sign change for small !, with a minimum for ! < 0 and similar a maximum for ! > 0
both close to the origin. If we move to the Markovian regime, namely, lim!!0 �[!] = �0 = 4|J |2/3, the dispersion vanishes
and the absorption becomes maximal.
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, (3.93)

Then we use the convolution theorem: Consider two functions in frequency space, f [!] and g[!], then the reverse
Fourier transform to the time domain can be computed using the convolution

F
�1
n
g[!] · f [!]

o
(t) =

1
p
2⇡

(g ⇤ f)(t) =
1
p
2⇡

Z 1

�1
g(⌧)f(t� ⌧) d⌧ , (3.94)

where ⇤ is the convolution operator (the convolution theorem can be proven using Fubini’s theorem, see Appendix
B 9). Note, that ⇤ is an associative and commutative operation. To recover the Markovian limit, consider following
terms
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(3.95)

appearing in Eq. (3.85). Here, 3 is assumed to be su�ciently large, which led us to approximate the second line in
the equation with

hai(t� ⌧)i ⇡ hai(t)i , (3.96)
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because we assumed that the bath becomes Markovian and any memory e↵ects due to past values of hai(t)i dissipate
accordingly. We can also express this di↵erently: Since the exponential function decays faster than hai(t)i oscillates
(for high 3), it will render hai(t)i to be local in time. By using this preliminary step, we are fully equipped to
reverse Fourier transform all of Eq. (3.85), where we recover the above set of equations from Sec. III E 1, which can
be found in Appendix B 9. This is the reason why the adiabatic elimination was called the Markovian limit and the
Fourier-transform elimination the non-Markovian limit.

Thus, we have shown that both elimination procedures are mostly equivalent but the latter approach leads to an
additional correction for the e↵ective damping rate �[!]. This does not only change the response of the e↵ective
reservoir to incoming modes, but also means that the third mode does not loose its frequency dependence. Thus it
is not inherently treated di↵erently in comparison to the remaining modes. For example, if one considers a perfect
circulator regime, where the system should be invariant to any labeling convention, namely, where every resonator
is indistinguishable from the other, we could not simply just treat the auxiliary to be dynamically di↵erent to the
rest of the system. For example, when interactions have the same value |Jij | ⌘ |J | (|�ij | ⌘ |�|) as well as the local
damping rates (i ⌘ ), adiabatically eliminating the third resonator would not result in a perfect circulator. Only
by additionally including the frequency response of the auxiliary resonator by Fourier transforming the equation of
motion would result in a circulator.

At this point of the thesis we have only hinted at the occurrence of nonreciprocity, but there was still no formal
discussion of this. So the logical question to ask is: “When does the system host nonreciprocal transport?”, or rather
“What is the condition for reciprocity in general?”. These kind of questions will be touched upon in the subsequent
section and will conclude the theoretical considerations needed to fully grasp the remaining parts of this thesis.

F. When is the system nonreciprocal?

As mentioned in Sections III B 2 and III E 1, only coherent interactions with an imaginary part can enforce nonre-
ciprocity in this model. This can be illustrated by expressing the equations of motion (3.85) for this e↵ective model
in terms of gauge-invariant phases from Eq. (3.31). Using the same gauge transformations as before, it follows

i! ha1[!]i = �


�1[!] + 1

2

�
ha1[!]i � i


|J |e

i� + i

⇣
|µ1|e

�i(#1+#2) � |µ2|

⌘ �[!]
2

�
ha2[!]i

� i


|�|e

�i#2 + i

⇣
|⌫1|e

�i(#1+#2) � |⌫2|

⌘ �[!]
2

�
ha

†
2[!]i , (3.97a)

i! ha2[!]i = �


�2[!] + 2

2

�
ha2[!]i � i


|J |e

�i� + i

⇣
|µ1|e

i(#1+#2) � |µ2|

⌘ �[!]
2

�
ha1[!]i

� i


|�|e

�i#2 � i

⇣
|⌫1|e

�i(#1+#2) � |⌫2|

⌘ �[!]
2

�
ha

†
1[!]i , (3.97b)

where we introduced

µ =
1

|J |2

⇣
|�31�32|e

�i(#1+#2) � |J32J31|

⌘
⌘ |µ1|e

�i(#1+#2) � |µ2| , (3.98a)

⌫ =
1

|J |2

⇣
|�31J32|e

�i(#1+#2) � |�32J31|

⌘
⌘ |⌫1|e

�i(#1+#2) � |⌫2| , (3.98b)

for readability. As mentioned before, a mode haii is driven either by haji or the adjoint ha
†
j
i. The system is reciprocal

when i ! j and j ! i are equal, and nonreciprocal if there is an asymmetry. Thus, we need to (at least partially)
decouple one mode from the other in one direction. How? If we only tune the coherent interactions J and � at the
same time and set them to
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J
!
= ⌥iµ

�0
2

=) |J |e
i� !

= ⌥i
⇣
|µ1|e

�i(#1+#2) � |µ2|

⌘ �0
2

,

�
!
= ⌥i⌫

�0
2

=) |�|e
�i#2 !

= ⌥i
⇣
|⌫1|e

�i(#1+#2) � |⌫2|

⌘ �0
2

,

(3.99)

we can fully decouple one cavity from the other, where the upper sign decouples cavity 2 from the dynamics of cavity
1, and the lower sign does the opposite. For this choice, the system becomes maximally nonreciprocal which we call
the unidirectional regime. Since our interaction amplitudes are time-independent, we cannot decouple the system
for all frequencies in the non-Markovian regime, as this would imply time-dependent interactions. Thus, we need to
make a choice. We have chosen the Markovian limit �0, as seen in Eq. (3.99). For ! = 0, the system will then enter
unidirectional transport from 1 ! 2 if we set both J = �iµ�0/2 and � = �i⌫�0/2. However, the nonreciprocal
transport will vanish for finite frequencies.

1. Optical isolator - e↵ective model without squeezing

Here we focus on a specific instance of the two-mode model - the optical isolator. An isolator is defined as a two-port
device with a non-symmetric scattering matrix S 6= S

T . Usually this is used for microwave or radio transmission
to shield a given port from signals from the other port, see Ref. [57]. To achieve nonreciprocity, an isolator must
incorporate a nonreciprocal element, which is typically a ferrite based material in microwave based isolators, see Ref.
[58]. In the strongest (unidirectional) limit, it transmits all power from port i to j, while absorbing all power coming
from port j. This means, that there will be no reflections at port i and j. Ideally, a scattering matrix of an isolator
could look like this:

S =

✓
0 0
1 0

◆
. (3.100)

The optical isolator e↵ectively describes the same working principle. For this, we focus only on linear interactions
and set TMS to zero �ij = 0 =) µ = �|µ2|. Here, we want to understand for which phase � nonreciprocity starts
to occur. For clarity, we set the modulus of J to |J | = |µ2|�0/2. Inserting it into Eq. (3.99) gives

|J |e
i� !

= ±i |µ2|
�0
2

=) e
i� !

= ±i . (3.101)

By then taking the argument, it follows

�R,L ⌘ ±
⇡

2
(mod 2⇡) , (3.102)

for the unidirectional circulator flux, where R (L) represents transport from 1 ! 2 (1  2). Additionally, �R ⌘
�L + ⇡Z (mod 2⇡). Some authors call these exceptional points of the open dynamical matrix D, which are spectral
singularities of non-Hermitian systems, see Refs. [59–63]. This result resembles the discussion about J having at least
a nonzero imaginary part from Eq. (3.37). The only points of reciprocity are the ones with a vanishing imaginary
part

�0 2 {0,±⇡} (mod 2⇡) . (3.103)

Thus, we can list all possible regimes of this model: 1. Reciprocal limits for � = �0, 2. Nonreciprocal regime for
Im(�) 6= 0, and 3. Unidirectional limit for � = �R,L, which are already discussed in Refs. [1], [14]. Here, we used
the imaginary part of �. Real and imaginary parts of a complex number z 2 C are defined as
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Re(z) =
z
⇤ + z

2
, and Im(z) =

i(z⇤ � z)

2
. (3.104)

Even though the limits of � are clear by now, one thing is still not ensured for the optical isolator to resemble
a microwave isolator: The lack of reflections. The phase only enforces the directionality, however, reflections are
still possible. To ensure for maximal transmittance without power-loss, further constrains on system-parameters are
needed. This will be done in Section IVC.

Note, that the optical isolator is frequently used in this thesis as a minimal example to better understand nonreciprocal
physics.

2. Parametrically driven directional amplifier

In general, TMS complicates the analysis from above, since there are multiple phases and couplings to keep track
o↵. Here, we want demonstrate a simple model with only a single gauge-invariant phase using TMS. Recall, that
setting � = ⌥i⌫�0/2 fully decouples ha†

j
i from haii, see Eq. (3.99). Additionally, we remove several interactions

J12 = J31 = �32 = 0, which means we need to re-express our abbreviations in terms of �:

uj :=
J3j

�
, vj :=

�3j

�
, and �[!] :=

2

i! + 3/2
|�|

2
. (3.105)

This gives us

µ = 0 and ⌫ = |⌫1|e
�i(#1+#2) .

But, this seems a bit misleading as #2 has now become a redundant phase, compare Fig. 6 (a). Therefore, the phase
#2 is not protected against the violent act of just gauging it away, and can be safely removed by performing the
following gauge transformation

ha1i ! ha1i e
i#2 =) ha

†
1i ! ha

†
1i e

�i#2 .

This collapses the di↵erential equations to

i! ha1[!]i = �


�1[!] + 1

2

�
ha1[!]i � i


|�|+ i|⌫1|e

�i#1
�[!]

2

�
ha

†
2[!]i , (3.106a)

i! ha2[!]i = �


�2[!] + 2

2

�
ha2[!]i � i


|�|� i|⌫1|e

�i#1
�[!]

2

�
ha

†
1[!]i . (3.106b)

Each mode haii is now only driven by the adjoint ha†
i
i and depends on a single phase #1. These sets of equations

nicely resemble the optical isolator, just with parametric interactions. Next, we need to find out the limits of #1. For
clarity, we again set the modulus of � to |�| = |⌫1|�0/2, where it follows

|�|e
i#1 !

= ⌥i|⌫1|
�0
2

=) e
i#1 !

= ⌥i . (3.107)
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Taking the argument results in

#1,⌥ ⌘ ⌥
⇡

2
(mod 2⇡) , (3.108)

for the nonreciprocal case - which leads to an amplification of the signal. There is a seemingly weak analogue to the
reciprocal case of the optical isolator by setting

#1,0 2 {0,±⇡} (mod 2⇡) . (3.109)

However, #1 = #1,0 gives us opposite signs for the imaginary part inside the brackets of Eq. 3.106. Thus, this limit
will redistribute the phases of modes and is just a quasi-reciprocal limit, flipping quadratures after an exchange of
source and detector.

At this point we have established a well rounded understanding of the reduced model regarding its reciprocity condi-
tions. Before we understand how this system scatters incoming fields, we will take a look at the energy-spectrum of
the three-mode and two-mode model.

G. Energy spectrum of the system

In this Section we set TMS to zero (�ij = 0 =) h2 = 0), and only focus on the dissipative three-mode ring and the
two-mode optical isolator.

1. Energy spectrum of the dissipative ring

If each interaction amplitude of the dissipative ring has the same magnitude |J | and phase �/3, it will become
translationally invariant. Thus, we can use the Bloch theorem and diagonalize the Hamiltonian using plane-wave
solutions, see Appendix B 8. The diagonal Hamiltonian in momentum space can then be written as

Hk ⌘

X

m=0,±1

!̄mb
†
m
bm , with plane-waves b

†
m

=
1
p
N

X

j

e
i
2⇡m

3 j
a
†
j
, (3.110)

and energies

!̄m ⌘

X

m

2Re(Je�i(2⇡m/3)) =
X

m

2|J | cos((�� 2⇡m)/3) . (3.111)

The quantum number m can be interpreted as units of quasi-momentum of the plane-waves, see Ref. [14]. The energy
spectrum in Fig. 10 (a) tells us a lot about the gauge-invariant phase �: If the system is in the reciprocal setting,
two eigenstates become degenerate, i.e. for � = 0 we observe !̄�1 = !̄1 = �1J . The remaining eigenstate has a
bigger distance from 0 with !0 = 2J . Eigenvalues are not equidistant from 0, and non-symmetrically distributed over
the energy scale for reciprocal limits. Moving away from this limit into the regions of nonreciprocity opens up the
degeneracy. The distance becomes maximal for unidirectional limits, where one eigenstate always has zero energy,
and the remaining become equidistant from 0 with a value of ±

p
2|J |. Also, after the phase completes one cycle of

2⇡, each eigenvalue m loses one unit of angular quasi-momentum m! m� 1, implying that the states are remapped
bm ! bm0 = bm�1, where the state with the lowest angular momentum gets mapped to the state with the highest
value of m. Therefore, after 3 cycles, namely � = 6⇡, the states are mapped to their original value of m.

In the matrix notation, we introduce the vector b = (b�1, b0, b1, b
†
�1, b

†
0, b

†
1)

T and write
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Hk ⌘

X

n,m

b
†
n
(Hk)nmbm , (3.112)

with Hk = diag(!̄�1, !̄0, !̄1, !̄�1, !̄0, !̄1), and !̄m 2 R. Energies come in pairs, but due to the hermeticity of Hk, have
the same value. This changes for the (isolated) dynamical matrix

Ak ⌘ �i⇤zHk = �i diag(!̄�1, !̄0, !̄1,�!̄�1,�!̄0,�!̄1) , with !̄m 2 R , (3.113)

see Fig. 10 (b). The imaginary part of the eigenvalues adheres to the same behaviour with respect to m, but
eigenvalues are now fully imaginary with opposite signs for modes bm and their adjoints. Therefore, we have two
pairs of degenerate eigenstates for each reciprocal point, where the remaining states remain non-degenerate. Spectra
of modes and adjoints remain decoupled for most values of �, but overlap for unidirectional values � = ±⇡/2.
For example, for � = ⇡/2 we observe ±!̄0 = ⌥!̄�1, and !̄1 = �!̄1. This is di↵erent for � = �⇡/2, where
±!̄m = ⌥!̄m+1(mod 3). To find the spectrum of the open dynamical matrix D, we make a small simplification by

(a) (b)

FIG. 10. Energy spectrum of the dissipative ring for a translationally invariant setting J = |J |ei�/3 ⌘ J12 = J31 = J
⇤
32. (a)

Spectrum of the Hamiltonian Hk. For reciprocal values, two eigenstates are degenerate with ⌥|J |, and the remaining mode
has magnitude ±2|J |. Therefore, energies are non-symmetrically centered around zero, always being 3 units of |J | apart. The
degeneracy is lifted for any other value of �, and reach maximal distance for the unidirectional limit. In this limit, one eigenstate
has zero-energy, where the others have magnitude ±

p
2|J |. After one complete cycle of 2⇡, each eigenvalue loses one unit of

angular quasi-momentum. After three cycles, states regain their initial values of m. (b) Spectrum of the dynamical matrix A
of the closed system. Here, eigenvalues become fully imaginary, with opposite signs between modes bm and adjoints b†m. Even
though eigenvalues for modes and adjoints are mostly decoupled, modes bm cross adjoints b†m with the same quasi-momentum
at unidirectional limits and become degenerate.

assuming  ⌘ i (keeping the translational invariance intact), implying K̃ = 11. In this case, we need to only
diagonalize A, since the damping matrix is proportional to an identity. The damping matrix simply shifts imaginary
eigenvalues on the real axis. The open dynamical matrix in momentum space is then

Dk = Ak �
1

2
K̃ = �

1

2
diag(+ i2!̄�1,+ i2!̄0,+ i2!̄1,� i2!̄�1,� i2!̄0,� i2!̄1) . (3.114)

This implies, that real parts of the energies encode the dissipation and the imaginary parts encode oscillations. To
see this more clearly, we solve the EOM via

ha(t)i = e
Dt
ha(0)i =) hb(t)i = e

Dkt hb(0)i , (3.115)
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which implies – as expected – for the first mode

hb�1(t)i = e
�t/2

e
�i2!̄�1t hb�1(0)i . (3.116)

2. Energy spectrum of the optical isolator

The dynamical matrix of the optical isolator can be diagonalized in a straightforward way, and the spectrum of De↵ [!]
reads

!̄1,2 = �
1 + 2 + �1[!] + �2[!]

4
± i

s✓
J + iµ

�[!]

2

◆✓
J⇤ + iµ⇤�[!]

2

◆
�

(1 � 2 + �1[!]� �2[!])2

4
. (3.117)

For simplicity, we set ! = 0, |Jij | =  =) �0 = �1 = �2, and  ⌘ 1/2 = 2/2 = 3/2 (where the latter choice is
not by accident and will become clear in Sec. IVC). This implies that µ = �|µ2| = �1. The Markovian (complex)
energy spectrum in units of |J | is given by

!̄1,2 = �2|J | ± i

q
|J |2 (ei� � i) (e�i� � i) = |J |(�2⌥

p

2i cos�) , and !̄3,4 = !̄
⇤
1,2 , (3.118)

where !̄3,4 are complex-energies for adjoint modes, see Fig. 11. Di↵erent to before, imaginary parts vanish and

(a) (b)

FIG. 11. Energy spectrum of the dynamical matrix De↵ of the (Markovian) optical isolator for |Jij | = , �0 = �1 = �2,
 ⌘ i/2 and �0 = 2, for i, j = 1, 2, 3. (a) Imaginary part of De↵ representing the energies of the Hamiltonian. Energies
vanish and eigenstates become degenerate for the unidirectional limit. In the reciprocal limit, they reach maximal distance
with the same magnitude but opposite signs. (b) Real part of De↵ representing dissipation. Dissipation always remains finite,
regardless of �. However, damping rates become symmetric for unidirectional points with the same magnitude. This changes
for other values of �, where damping rates get redistributed and reach full asymmetry for reciprocal points.

become degenerate for the unidirectional limit, but never cross. Damping on the other hand (the real part) does not
vanish. This also holds true in the reciprocal limit

!̄1,2 = |J |(�2⌥
p

2i) , (3.119)

implying that damping always remains for every value of �. Damping rates meet at the unidirectional limits and have
the same magnitude for both modes. However, the magnitude of damping is redistributed between modes for values
of � di↵erent from unidirectional limits. This distance reaches its maximum at the reciprocal points.
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IV. Scattering Matrix

To understand the transmission/reflection behaviour of the system, we will derive the S-matrix using I/O theory. An
incident field entering the system will interact and get scattered before leaving the system as an output-field. The
S-matrix exactly encodes how the scattering will occur and what the transmission/reflection probabilities are.

A. Derivation of the S-Matrix using I/O theory

This part of the thesis will be performed in the quadrature representation as the derivations are more illustrative that
way. It should be noted that the derivation could be done from the mode representation directly. However, as we will
demonstrate, we can simply transform the scattering matrix between bases using T.

We start at the Heisenberg-Langevin equation in frequency space and equip it with reservoir fields, which are incident
to the resonators

i! v[!] = Mv[!]�
p

Kvin[!] , (4.1)

and are compactly written in the vector vin[!]. Here, the dynamical matrix M is not explicitly dependent on !, but
remember that this is not the case for the e↵ective model. We also introduced the square root of the dissipation
matrix K as

p

K = diag(
p
1,
p
2,
p
3)⌦ 112 . (4.2)

Combined with input-fields, the expression
p
Kvin[!] can be interpreted as our operator-valued Langevin force. Since

I/O theory holds at the level of operators, we do not need to take the expectation value for this derivation. By solving
the Heisenberg equation in terms of input-fields, we find

v[!] = � (i!11�M)�1
p

Kvin[!] ⌘ ��[!]
p

Kvin[!] , (4.3)

where �[!] is the response function of our system and will be denoted as our susceptibility matrix, see Wanjura et al.
[64]. As mentioned earlier, this relates system modes v[!] to input-fields vin[!]. Output-fields are then related to
input-fields using the I/O relation (see Eq. (2.68)), implying

vout[!] = vin[!] +
p

Kv[!] =
h
11�
p

K�[!]
p

K

i
vin[!] ⌘ S[!]vin[!] , (4.4)

where

S[!] = 11�
p

K�[!]
p

K = 11�
p

K (i!11�M)�1
p

K , (4.5)

is the S-matrix in the quadrature representation. Note that this expression is unitary for the full three-mode system,
but unitarity can be broken for an e↵ective model. Naturally, the S-matrix in the mode-representation S̃[!] can be
recovered by applying the transformation matrix

S̃[!] = T
†
S[!]T , (4.6)
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where the rigorous proof can be found in Appendix C 1. Since there are notable di↵erences in the S-matrix properties
between the bases, we intend to take a closer look at them.

1. Di↵erences of the S-matrix between the bases

Given that the dynamical matrix in the quadrature representation is real M = M
⇤, the complex conjugate of the

susceptibility matrix

�⇤[!] = (�i!11�M)�1 = �[�!] , (4.7)

only changes the sign of !, which implies for the S-matrix

S
⇤[!] = S[�!] . (4.8)

This relation greatly simplifies many calculations and will become relevant in the analysis of the S-matrix and the noise
later. However, this relationship does not hold in the mode basis, since the dynamical matrix is complex in general
D 2 Mat2N (C). But as we learned in Section III B 3, the complex conjugate D

⇤ can be expressed as D
⇤ = ⇤xD⇤x

simply by permuting blocks. This implies for the susceptibility matrix

�̃⇤[!] = (�i!11�D
⇤)�1 = (i(�!)11�⇤xD⇤x)

�1 = ⇤x �̃[�!]⇤x , (4.9)

where we used the fact that ⇤x = ⇤
�1
x

, (B�1)⇤ = (B⇤)�1, and (BCE)�1 = E
�1

C
�1

B
�1 for generic matrices B,C,E.

This property also holds for the S-matrix

S̃
⇤[!] = ⇤xS̃[�!]⇤x , (4.10)

since the damping matrix remains invariant under an exchange of blocks
p

K̃ = ⇤x

p
K̃⇤x in the mode-basis. Thus,

the relations are similar for both bases up to an exchange of blocks. However, this property in the mode basis has
stark consequences, as the S-matrix flips the sign of ! for adjoint modes. To see this, consider aout[!] = S̃[!]ain[!],
where it follows from a

‡ = ⇤xa and Eq. (4.10)

a
†
out[!] = (a‡out[!])

T =
⇣
⇤x

h
S̃[!]ain[!]

i⌘T
=
⇣h

⇤xS̃[!]⇤x

i
[⇤x ain[!]]

⌘T
=
⇣
S̃
⇤[�!]a‡in[!]

⌘T
. (4.11)

Thus, relating adjoint input- to output-fields changes the sign of the frequency inside the S-matrix

a
‡
out[!] = S̃

⇤[�!]a‡in[!] , (4.12a)

a
†
out[!] = a

†
in[!] S̃

†[�!] . (4.12b)

Additionally, we can define the action of ‡ for the !� dependent S-matrix

S̃
‡[!] ⌘ ⇤xS̃[!]⇤x = S̃

⇤[�!] . (4.13)
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At a first glance this is a surprising result, since Eq. (4.12a) can also be understood as the time-reversed process,
where output-fields are incident, get scattered with an opposite !-dependence, and leave the system as input-fields.
Consider a unitary system S̃

†
S̃ = 11() S̃

T
S̃
⇤ = 11, then Eq. (4.12a) can be formally written as

a
‡
in[!] = S̃

T [�!]a‡out[!] . (4.14)

The last equation has far-reaching consequences, which will become important shortly.

By rewriting the susceptibility matrix, we see why that sign flip happens for a
‡
in[!]. For this, the dynamical matrix

D = �i⇤zH� K̃/2 lets us re-write the susceptibility as

�[!] = (i!11�D)�1 =

✓
i(!11 +⇤zH) +

1

2
K̃

◆�1

=

✓
i⇤z(!⇤z +H) +

1

2
K̃

◆�1

, (4.15)

which is then inserted into

a
‡[!] = (⇤x�[!]⇤x)

p
K̃ a

‡
in[!] . (4.16)

The resulting system fields are then

a
‡[!] =

✓
�i⇤z ((�!)⇤z +H

⇤) +
1

2
K̃

◆�1p
K̃ a

‡
in[!] = �⇤[�!]a‡in[!] , (4.17)

with ⇤xH⇤x = H
⇤. Acting with ⇤x on !� dependent matrices thus necessarily leads to a sign-change of !, compare

Eq. (4.13). However, the overall sign of the damping matrix remains untouched, thus it always acts as a dissipation,
where energy always flows out of the system.

Ultimately, the properties of the S-matrix in the quadrature basis are di↵erent for the non-Markovian e↵ective model.
Similarly to the three-mode model in the mode basis, the dynamical matrix Me↵ [!] 2 Mat2N (C) lives in the complex
domain. This will lead to an observable e↵ect of the scattering probabilities of the e↵ective model in the quadrature
basis.

B. Properties of the S-matrix and non-unitarity

To fully appreciate how non-unitary S-matrices can occur in e↵ective models (i.e. the optical isolator), we will take
a look at the general properties of the S-matrix. This Section roughly follows Moskalets [65].

As we know, the S-matrix for complete descriptions of a model, is always unitary and fulfills S
†
S = 11. Thus, we

consider the case where no degrees of freedom are left out for this description. The unitarity is a direct consequence
of micro-reversibility, and the conservation of probability currents, see Chapter 1 of Ref. [65]. For a simple system
with two ports, we get the following S-matrix

S =

✓
S11 S12

S21 S22

◆
, (4.18)

with complex transition amplitudes Sij ⌘ (S)ij 2 C, for i, j = 1, 2. By convention, we have chosen the left (right)
port to be labeled 1 (2). The modulus squared of transition amplitudes |Sij |

2, gives the scattering probability from
port j ! i. Diagonal elements R11 = |S11|

2 and R22 = |S22|
2 are the reflection coe�cients. All remaining ones are

the transmission coe�cients, with T21 = |S21|
2 representing the probability of scattering from left to right (1  2),
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and T12 = |S12|
2 for the opposite direction (1  2). Since probability currents have to be conserved (anything not

reflected has to be transmitted, see Ref. [65]), we get the following properties for this two port system

|S11|
2 + |S21|

2 = 1 , |S22|
2 + |S12|

2 = 1 . (4.19)

The S-matrix used in Eq. (4.18) can be easily extended to systems with N channels. Simply summing up scattering
probabilities for each column generalizes the property above

NX

j

|Sji|
2 = 1 , 8i 2 N , (4.20)

see Ref. [65] for a more in-depth derivation of formula above using current-conservation. However, there is an even
stricter condition for time-reversal symmetric systems (without magnetic fields): If  is a solution to the Schroedinger
equation, there also exists a solution  

⇤. As in the Section before, we can relate incoming waves  in to outgoing
waves  out via the S-matrix

 out = S in . (4.21)

However, since the system is time-reversal symmetric, we can get a similar statement for time-reversed fields  in !  
⇤
in,

and  out !  
⇤
out. After reversal, input-fields are expressed by  ⇤

out, and output-fields by  ⇤
in. As it turns out, the

scattering process for reversed fields still need to be described by the same S-matrix (see Refs. [22, 65]), which implies

 
⇤
in = S 

⇤
out . (4.22)

The first equation can be written as

 out = S in ()  
⇤
out = S

⇤
 
⇤
in , (4.23)

implying for the S-matrix

S
�1 = S

⇤ =) SS
⇤ = 11 . (4.24)

With the unitarity S
�1 = S

†, we get a very strict condition for the S-matrix of time-reversal symmetric systems

S
⇤ = S

†
() S = S

T
. (4.25)

Thus, the S-matrix becomes symmetric for a reciprocal system, and has equal reflection |Sii|
2 = |Sjj |

2 and transmission
|Sij |

2 = |Sji|
2 probabilities 8 i, j. This result can be inserted into Eq. (4.14), where a reciprocal system with the

(unitary and symmetric) S-matrix S̃
T [!] = S̃[!] implies

a
‡
in[!] = S̃[�!]a‡out[!] . (4.26)
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By comparing this to the original expression aout[!] = S̃[!]ain[!], it becomes clear that adjoint modes (analogous to
time-reversed modes) are scattered by the same S-matrix, but have a flipped sign of !.

Nevertheless, this is di↵erent for a nonreciprocal system: The S-matrix for an idealized optical isolator (i.e. only
allowing transport from 1 ! 2) has only one non-zero element, e.g., |S21|

2 = 1. Consequently, the S-matrix is not
symmetric, nor even unitary. The only way to achieve such a behaviour is to construct a reduced model, where
missing elements of the full description protect the unitarity of the S-matrix. The non-unitary S-matrix is therefore a
consequence of an e↵ective description. However, this also implies, that such a S-matrix can be constructed in general.

C. Scattering behaviour of the optical isolator and maximizing power transfer

In this Section, we examine the scattering behaviour of the optical isolator and find a condition for maximizing
power-transfer of the optical isolator and the dissipative ring. As discussed in Section III F 1, even in the extreme
unidirectional limit, excitations do not necessarily traverse the system with maximized transmittance. Thus, reflection
coe�cients need to be minimized. If these vanish, the S-matrix in the unidirectional limit will resemble an idealized
isolator. This is called impedance-matching and ensures maximum power-transfer and minimal reflections. To un-
derstand impedance-matching, we make an analogy with electrical impedance. For an electronic device (load) with
an incident electromagnetic signal (source), the impedance Z = R + iX represents the loads opposition to energy
flow of (AC) signals, where R is the resistance and X the reactance. In DC currents, reactance vanishes, making
impedance purely resistive. Power-loss occurs when the impedance of a load mismatches the phase of the source,
causing reflections. Consequently, signals cannot properly enter the load. According to the maximum power transfer
theorem [66], maximum power transfer occurs when the load impedance equals the conjugate of the source impedance,
Zload = Z

⇤
source. This implies, that resistances must be equal and the phase-di↵erence between reactances must vanish.

After understanding the necessity of impedance-matching for unidirectional transport, we can refocus on the S-matrix.
Although Eq. (4.5) provides an expression for the S-matrix, it does not o↵er su�cient insights into its underlying
components. Therefore, we aim to derive an analytical expression for the S-matrix of the optical isolator. This will
be beneficial for understanding nonreciprocity and determining an impedance-matching condition. Note, that the
following derivation is done in the mode-representation.

We start by inserting the equations of motion, see Eq. (3.85), into the Heisenberg-Langevin equation (4.1). This gives
us the subsequent solutions

ha1[!]i = �i


J + iµ

�[!]

2

�
�1[!] ha2[!]i �

p
1 �1[!] ha1,in[!]i , (4.27a)

ha2[!]i = �i


J
⇤ + iµ

⇤�[!]

2

�
�2[!] ha1[!]i �

p
2 �2[!] ha2,in[!]i , (4.27b)

with µ = �u2u
⇤
1, and where we introduced the e↵ective susceptibility

�
i
[!] ⌘

2

i2! + i + �i[!]
=

2(i + �i[!])

4!2 + (i + �i[!])2
� i

4!

4!2 + (i + �i[!])2
, (4.28)

encoding the response of a mode haii to any incoming excitation - either due to an input-field, or another mode haji.
Note, that we additionally introduce a combined susceptibility for conciseness

�[!] ⌘ �1[!]�2[!] . (4.29)

However, since the aim is to find a useful expression of the S-matrix, additional abbreviations for (coherent and
dissipative) couplings are introduced
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l1[!] ⌘

✓
J + iµ

�[!]

2

◆
, l2[!] ⌘

✓
J
⇤ + iµ

⇤�[!]

2

◆
, (4.30)

which can be reformulated as

l1,2[!] =

✓
|J |e

±i� + i|µ2|
�[!]

2

◆
. (4.31)

Conclusively, the I/O relation from Eq. (4.4) and Eq. (4.27) written in terms of input-fields

ha1[!]i =
1

1 + �[!] l1[!] l2[!]
(�
p
1 �1[!] ha1,in[!]i+ i

p
2 �[!] l1[!] ha2,in[!]i) , (4.32a)

ha2[!]i =
1

1 + �[!] l1[!] l2[!]
(�
p
2 �2[!] ha2,in[!]i+ i

p
1 �[!] l2[!] ha1,in[!]i) , (4.32b)

give us the desired analytical expression of the S-matrix

S̃e↵ [!] =
1

1 + �[!] l1[!] l2[!]

0

@
1 + �[!] l1[!] l2[!]� 1�1[!] i

p
12 �[!] l1[!]

i
p
12 �[!] l2[!] 1 + �[!] l1[!] l2[!]� 2�2[!]

1

A . (4.33)

If the system is in the unidirectional regime, at least one of the li�terms must vanish at resonance. For convenience,
the modulus (with |µ2| = |J32J31|/|J |

2, and �0 = 4|J |2/3) is set to

optical isolator: |J |
!
= |µ2|

�0
2

, (4.34a)

dissipative ring: |J12|
!
= |J31J32|

4

3
, (4.34b)

(where the result for the dissipative ring is analogously derived), which implies for the coupling

l1,2[!] =
|µ2|

2

�
e
±i��0 � i�[!]

�
. (4.35)

By choosing an unidirectional limit of the phase, e.g. � = �R (1 ! 2), the term l1[0] = 0 becomes zero, implying
that the transmission coe�cient |(S̃e↵)12|2 = 0, vanishes as well. This clearly resembles the behavior of Eq. (4.32a),
where the second mode cannot drive the first mode. However, reflections inside the S-matrix also change (S̃e↵ [!])ii =
1� i �i

[!]. And since these coe�cients should vanish, impedance-matching can be formulated as follows:

i�̄i[0]
!
= 1 =) i

!
= �i[0] , (4.36)

for our choice of |J | from Eq. (4.34b). Deviating from this condition will result in power-loss, so we call
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Ci ⌘
�i
[
0]i , (4.37)

the cooperativity of the damping parameters, which is maximized for the impedance-matching condition i = �i ()
C = 1. The impedance-matching condition for the three-mode dissipative ring can be easily derived by inserting the
explicit definition of �

�i = i =) 4|J3i|
2 = i3 , (4.38)

where the same condition can also be found by setting reflection coe�cients of the dissipative ring to zero. Naturally,
since both reflection coe�cients of the optical isolator have to vanish, both cooperativities have to be maximized
C ⌘ C1 = C2 = 1. Rearranging Eq. (4.38)

|J3i| =

p
i3

2
, (4.39)

gives us for the impedance-matching condition of the optical isolator

|J | =

p
12

2
. (4.40)

In the subsequent, system-parameters are expressed as unit-less quantities. Of course, this choice is not unique.
However, we focus on two impedance-matched regimes: 1. Symmetrically damped (or circulator) setting, with  ⌘

1/2 = 2/2 = 3/2 (for the optical isolator  ⌘ 1/2 = 2/2 = 2|J |2/�0), and 1. Asymmetrically damped (or
ring) setting, with  ⌘ 1 = 2 = 3/4 (for the optical isolator  ⌘ 1 = 2 = |J |

2
/�0). Thus, every other

parameter in both models will be expressed in units of , e.g. for C = 1, a valid choice becomes |J |/ = 1 and
|J3i|/ = 1. Recall, that impedance-matching is met for any parameter-choice respective to conditions mentioned
earlier. And even though all reflection coe�cients vanish in both settings, transmission will change depending on
our specific choice of damping rates. Why is that? Consider the symmetric setting  = i/2. Here, the auxiliary
behaves noticeably di↵erent between the Markovian and the non-Markovian regime, as 3 is not much bigger than
other system-parameters. However, the auxiliary is damped much stronger 3 > 1,2 in the asymmetric setting, which
implies that the non-Markovian correction closer resembles the Markovian regime, as shown in Fig. 8.

To see how impedance-matching e↵ects the S-matrix, we assume the unidirectional limit � = �R = ⇡/2, set |J | =
|µ2|�0/2, and choose symmetric damping rates 1,2/2 ⌘ . Without impedance-matching �0 6= 2, the Markovian
S-matrix (for ! = 0) reduces to

S̃e↵ [0] =

0

B@

�0/2�

�0/2+
0

4�0/2
(�0/2+)2

�0/2�

�0/2+

1

CA . (4.41)

By impedance matching, the reflections vanish |(S̃e↵)ii|2 = 0, and the only remaining transmission is |(S̃e↵)21|2 = 1
(1! 2), which perfectly resembles the S-matrix of an idealized isolator, compare Section III F 1. For � = �L the only
remaining element is the other transmission coe�cient |(S̃e↵)12|2 = 1.

Figure 12 compares frequency dependent scattering probabilities |S̃aiaj |
2
⌘ |(S̃e↵)ij |2 of the optical isolator for varying

transport limits, where solid (dashed) lines represent a Markovian (non-Markovian) e↵ective reservoir. We assume a
maximized coorperativity C = 1 and |J |/ = 1 , where the first two pictures in each row show the symmetric i = 2
and the last picture in each the asymmetric regime 1,2 = 3/4 = . The first Fig. 12 (a) shows nonreciprocal
transport for � = �R and symmetric damping rates, where all reflections |S̃aiai |

2 = 0 vanish, and transmission from
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a1 ! a2 becomes unidirectional on resonance with |S̃a2a1 |
2 = 1 and |S̃a1a2 |

2 = 0. For a non-Markovian reservoir,
clear dips/peaks around |!| =

p
2 are visible due to the additional oscillations of the auxiliary. Far o↵-resonance,

reflections are maximized and transmission from 1 ! 2 also vanishes. The second Fig. 12 (b) shows the same as
before, only with � = �L, leading to |S̃a1a2 |

2 = 1, |S̃a2a1 |
2 = 0 and no reflections |S̃aiai |

2 = 0 for ! = 0. The
third Figure 12 (c) in the first row shows (b) for asymmetric damping rates  ⌘ 1,2 = 3/4. We see, how the non-
Markovian curve converges to the Markovian limit, since the auxiliary is damped stronger. The dips/peaks compared
to (b) are significantly weaker, and the frequency dependency of the non-Markovian auxiliary on the dynamics are
barely noticeable. Figure 12 (d) shows the first reciprocal case with � = 0 in the symmetric regime. Here, reflections
and transmissions are the same for both modes. We see a symmetric line-shape for non-Markovian curves, which are
not centered at ! = 0. The oscillations of the auxiliary have a more noticeable e↵ect on the probabilities, especially
for negative ! as the di↵erence between the Markovian and non-Markovian case is the strongest here. Thus, there
is a clear sign dependence, since the non-Markovian case only slightly deviates from the Markovian limit for positive
frequencies. The next Fig. 12 (e) for � = ⇡ shows the same behaviour, only flipped around the y-axis. However, the
di↵erence between (d) and this case vanishes at resonance. Thus, any asymmetry in scattering probabilities is only
relevant for finite !. Section VIA, attempts to further illuminate this behaviour. Note, that this result was already
observed for similar systems, see Chen et al. [63]. The last Fig. 12 (f) shows � = 0 in the asymmetrically damped
setting, where the non-Markovian case again converges to the Markovian limit. The quadrature case can be found in
Appendix C 5, see Fig. 30.

(a) (b) (c)

(d) (e) (f)

FIG. 12. Markovian (solid) and non-Markovian (dashed) scattering probabilities of the optical isolator, plotted against frequency
for di↵erent limits of �. We assume the parameters C = 1 and |J |/ = 1. The first two pictures in each row show symmetric
damping rates  = i/2, and the last picture asymmetric rates 1,2 = 3/4 = . (a) Nonreciprocal case for � = �R in the
symmetric regime. On resonance, reflections |S̃aiai |2 = 0 vanish, and transmissions become |S̃a2a1 |2 = 1, |S̃a1a2 |2 = 0. Clear
dips/peaks around !/ = ±

p
2 are visible due the frequency dependence of the auxiliary, and correspond to the eigenvalues,

see Sec. IIIG. (b) Nonreciprocal case with opposite phase � = �L, leading to |S̃a1a2 |2 = 1, and |S̃a2a1 |2 = 0. (c) The
same as (a) with � = �R but in the asymmetric regime. The non-Markovian case converges to the Markovian limit since the
auxiliary is damped stronger. The dips/peaks are significantly weaker, and the e↵ect of the auxiliary on the dynamics is barely
noticeable. (d) Reciprocal case for � = 0 in the symmetric regime. Reflections and transmissions are the same for both modes.
Non-Markovian curves are symmetric, yet not centered at ! = 0. The auxiliary has a noticeable e↵ect on probabilities. The
Markovian and non-Markovian curves di↵er considerably for negative frequencies. (e) Reciprocal case for � = ⇡, with the same
behaviour as (d) only flipped around the y-axis. On resonance, the di↵erence between (d) and this case vanishes. Thus, the
behaviour of asymmetrically tilted curves is only relevant for finite !. (f) Reciprocal case for � = 0 for asymmetric damping
rates. Again, the non-Markovian curve converges to the Markovian limit.
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V. Noise and di↵usion

A. Derivation of the output-noise

Up to know, we were only concerned with limiting cases and transport properties within the system. However, we
still lack an understanding of how inputs are modified by traversing the system. Thus, the goal of this Section is to
find an expression for the output-noise. This opens up a deeper analysis into the modulating e↵ect of the system to
incoming reservoir modes beyond the signal itself, i.e. by also including thermal fluctuations/noise into the picture.
Here, we are only concerned with the noise at output-ports. Our system a↵ects incident noise in two ways: 1. The
system acts as a filter, modulating and filtering the frequencies of incident noise (see Sec. VB), and 2. Noise entering
a given port will be redistributed over (possibly multiple) output-ports of the system. Where the S-matrix only tells
us how resonantly the system responds to certain frequencies of incoming modes, frequency does mean something
di↵erent for the output-noise spectrum: Incoming modes are scattered by the system (however the system may
respond) and leave the system again as transformed modes, where some frequencies are cut-o↵ and others modulated.
So, frequency for the output-noise refers to frequencies of (in- or outgoing) waves themselves. Before jumping right
into the derivation, we first explain our approach: The output-noise spectrum can be found by calculating the the
covariances of output-modes, using their second statistical moments. Since quadrature operators are hermitian, they
closely resemble classical (yet non-commuting) random variables, which can be used to simplify the derivation of the
covariance matrix. Naturally, this is not the case for non-Hermitian operators like the standard mode operators,
where one has to be more careful. Thus, we will first focus on an expression in the quadrature representation before
moving on to the mode basis.

1. Output-noise in the quadrature basis

The (non-symmetrized) covariance matrix is given by subtracting the expectation values of quadratures hvi hvT
i from

their second moments hvvT
i (see Jacobs [67]):

Cnon-sym
def
= hhvvT

ii ⌘ hvv
T
i � hvihv

T
i . (5.1)

Thus, the covariance matrix is a measure of how correlated quadratures are - the first term simply vanishes for
uncorrelated quadratures. However, stochastic operators can be decomposed as

v = hvi+ ⇠v , (5.2)

where ⇠v is the operator-valued noise vector with zero-mean h⇠vi = 0. This way, thermal noise acts as the devi-
ation from the expected value, analogous to (classical) force fluctuations in Brownian motion [33, 34]. Using this
decomposition, it follows for the second moments

hh v1v2 ii = h(hv1i+ ⇠v1)(hv2i+ ⇠v2)i � hv1ihv2i = h⇠v1⇠v2i+ hv1i hv2i � hv1ihv2i = h⇠v1⇠v2i , (5.3)

implying that the covariance between quadratures v1, v2 actually gives us the covariance of their fluctuations (regard-
less of hvii). Since we deal with non-commuting operators, we can symmetrize the former expression

Csym =
1

2

�
Cnon-sym +C

T

non-sym

�
=

1

2

⇣
hhvv

T
ii+ hhvvT

ii
T

⌘
=

1

2

�
hvv

T
i+ hvvT

i
T
�
� hvihv

T
i , (5.4)

which is now independent on the order of operators, see Ref. [67]. This symmetrization procedure can be further
extended if v explicitly depends on additional arguments. For example, if quadratures in frequency space v[!] depend
on a dynamical parameter !, the fully symmetrized covariance matrix can be written as
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C[!,!0] =
Csym[!,!0] +Csym[!0

,!]

2
=

1

4

⇣
hhv[!]vT [!0] ii+ hhv[!]vT [!0] iiT + hhv[!0]vT [!] ii+ hhv[!0]vT [!] iiT

⌘
.

(5.5)

Therefore, we recover an expression for C[!,!0] which is symmetric in ! and !
0. Naturally, the ! – dependency

is exactly the reason why non-Hermitian operators need a more careful treatment. Since our aim is to find the
output-noise, we can analogously write the covariance matrix for output-fields

Cout[!,!
0] =

1

4

⇣
hhvout[!]v

T

out[!
0] ii+ hhvout[!]v

T

out[!
0] iiT + hhvout[!

0]vT

out[!] ii+ hhvout[!
0]vT

out[!] ii
T

⌘
, (5.6)

and by using the S-matrix from Eq. (4.4)

vout[!] = S[!]vin[!] , (5.7)

we find that output-field correlators can be expressed in terms of input-field correlators

hhvout[!]v
T

out[!
0] ii = S[!] hhvin[!]v

T

in[!
0] ii ST [!0] . (5.8)

This implies for Cout[!,!0]

Cout[!,!
0] =

1

4

⇣
S[!]

h
hhvin[!]v

T

in[!
0] ii+ hhvin[!

0]vT

in[!] ii
T

i
S
T [!0]

+S[!0]
h
hhvin[!

0]vT

in[!] ii+ hhvin[!]v
T

in[!
0] iiT

i
S
T [!]

⌘
.

(5.9)

To progress further, we need to identify the input-correlators. Using the commutation relations of input-fields (see
Ref. [34]), it follows

hh ai,in[!]a
†
j,in[!

0] ii = �ij (n̄j + 1) �(! + !
0) , hhxi,in[!]xj,in[!

0] ii = �ij

✓
n̄j +

1

2

◆
�(! + !

0) , (5.10a)

hh a
†
i,in[!]aj,in[!

0] ii = �ij (n̄j) �(! + !
0) , hh pi,in[!]pj,in[!

0] ii = �ij

✓
n̄j +

1

2

◆
�(! + !

0) , (5.10b)

hh a
†
i,in[!]a

†
j,in[!

0] ii = hh ai,in[!]aj,in[!
0] ii = 0 , hhxi,in[!]pj,in[!

0] ii = �ij
i

2
�(! + !

0) , (5.10c)

where n̄j ⌘ n
th
j

= nB(Tj) are temperature dependent Bose-Einstein occupations of incident modes with index j =
1, . . . , N . As mentioned in Section II E 1, since this expression is a constant over the whole frequency-bandwidth of
the reservoir, it describes white noise. Note, this is just an assumption we make and one could perfectly assume a
di↵erent distribution for the input-noise. Recall, that reservoir modes for di↵erent frequencies are di↵erent modes
altogether. Thus, we assume that each incoming mode looks exactly the same from the point of view of the system.
Additionally, as the avid reader might see, modes i, j are assumed to be uncorrelated. Quadrature correlators result
in the following non-symmetrized input covariance
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C
non-sym
in [!,!0] = hhvin[!]v

T

in[!
0] ii ⌘ �(! + !

0)Snon-sym
in = �(! + !

0)
NM

j=1

✓
n̄j +

1

2

◆
12 �

1

2
�y

�

= �(! + !
0)

 
1N ⌦

✓
n̄j +

1

2

◆
12 �

1

2
�y

�

j

!
.

(5.11)

Here, Snon-sym
in is the frequency-independent input-noise spectral density. For an explicit form of the input correlation

matrix, consider Appendix D5. Inserting the non-symmetrized input covariance matrix into Eq. (5.9), leads to

Cout[!,!
0] = �(! + !

0)
1

2

 
S[!]

"
S
non-sym
in + (Snon-sym

in )
T

2

#
S
T [!0] + S[!0]

"
S
non-sym
in + (Snon-sym

in )
T

2

#
S
T [!]

!
. (5.12)

This can be further simplified by introducing a vector of thermal occupations nth ⌘ (n̄1, n̄1, . . . , n̄N )T , and calculating
the symmetrized input-noise
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, (5.13)

where

Cin[!,!
0] = �(! + !

0)Sin(nth) , (5.14)

is the symmetrized input-covariance. Here, we used the fact that the transpose of a Kronecker product distributes
(A⌦B)T = A

T
⌦B

T , and �T

y
= �

⇤
y
= ��y for the third equality in Eq. (5.13). The resulting expression
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12
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, (5.15)

is the fully symmetrized, frequency-independent and diagonal input-noise spectral density. For completeness, it is also
useful to note that the input-noise is trivially symmetric Sin = S

T

in. Finally, by inserting Eq. (5.15) into Eq. (5.12),
we obtain the output covariance matrix (for !0 = �!)

Cout[!,!
0] = �(! + !

0)


S[!]SinS

T [�!] + S[�!]SinS
T [!]

2

�
, (5.16)

where

Sout[!] =
S[!]SinS

T [�!] + S[�!]SinS
T [!]

2
, (5.17)

is the spectral matrix of the output-noise operators and describes the spectrum of output-currents. The output-noise
spectral density then relates symmetrized correlations of the noise sources to their spectra (compare Eq. (5.14))
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Cout[!,!
0] = �(! + !

0)Sout[!] . (5.18)

Since the S-matrix in the quadrature basis fulfills S[�!] = S
⇤[!], the expression for the noise spectral density from

Eq. (5.17) reduces to

Sout[!] =
S[!]SinS

†[!] +
�
S[!]SinS
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2
= Re

�
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�
. (5.19)

This ensures that all elements of the output-noise spectrum are always real in the quadrature representation. Next,
we find an expression of the output noise in the mode representation and highlight di↵erences between both repre-
sentations in the subsequent.

2. Output-noise in the mode basis

Before, the unitary T from Eq. (3.69) was used to transform between bases. However, as it is not clear at this point if
T gives us the correct expression for the covariance in the mode basis, we need to approach this di↵erently: Assume
an operator-order and frequency-symmetrized expression for the output-covariance in the mode representation, which
will be introduced here but justified later, expressed by the output-correlators
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Here, {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator for some generic operators Â, B̂, which implies using Eq. (3.42)
that {a,a†} = aa

† + (a‡ aT )T . This expression is reminiscent of the expression given by Eq. (54) in Ref. [40]. Since
(time-dependent) I/O operators have units of 1/

p
s, the expression hh a†

i,in(t) ai,in(t) ii can be viewed as the noise of
the input particle flux. As an illustrative example, we take the expectation value of the commutator for input-fields
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and get an element of the symplectic group Sp(2N,R), where we used Eq. (5.10) for the last equality. In turn, the
expectation value of the anti-commutator results in a familiar expression
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which is just the transformed input-covariance matrix

C̃in[!,!
0] = T

†
Cin[!,!

0]T , (5.23)

with
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and the input-noise
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◆3

5⌦ 112 . (5.25)

To answer the question posed at the beginning of this derivation: Indeed, one can transform expression (5.20) back
to the quadrature representation using T. However, we need to understand how to adequately transform between the
bases. We restate the transformation formula from Eq. (3.69)

a[!] = T
†
v[!] , (5.26)

and multiply both sides by ⇤x. This gives us ⇤x a[!] = a
‡[!] for the LHS, and by using

T = T
⇤
⇤x , (5.27)

we get

a
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Thus, v[!] can also be expressed as

v[!] = T
⇤
a
‡[!] , (5.29)

implying

v
T [!] = a

†[!]T†
. (5.30)

This expression is completely reasonable even from a physical perspective, as quadratures are hermitian and daggered
elements should remain invariant compared to non-daggered ones with v

†[!] = v
T [!]. With all these rather technical

considerations, we are equipped to tackle the problem of transforming the covariance matrix between the bases.
Naturally, we can perform the transformation starting from either basis, however, for didactic reasons we transform
from the quadrature to the mode basis. As before, we start at Eq. (5.6), insert Eq. (5.7), arrive at Eq. (5.8)
and then transform T

†
Cout[!,!0]T. Due to brevity, we do that term-wise. By using Eq. (5.26), Eq. (4.12b), and
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(5.31)

Transposed terms are a bit more tricky to transform, so we need to make a few remarks: First, we notice that complex
conjugating the basis transform of the S-matrix results in
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Next, Eq. (3.41) implies, that we can write a
†
⇤x = (⇤x a

‡)T = a
T . With Eq. (5.27), transposed terms can be

calculated as
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where remaining terms transform the same way for flipped !,!
0. Indeed, the form of Eq. (5.20) for the output-

covariance is justified, and we can change representations by simply applying the transformation

C̃out[!,!
0] = T

†
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0]T . (5.34)

The output-covariance from Eq. (5.20) can also be expressed in terms of input-covariances (which is derived in
Appendix D 2) as
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with the output-noise spectrum

S̃out[!] =
S̃[!]S̃inS̃

†[!] + S̃[�!]S̃inS̃
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2
. (5.36)

Recall, that S̃[�!] 6= S̃
⇤[!], which implies that the last expression cannot be reduced any further. Thus, the output-

noise is not protected to be real for all cases. However, since diagonal elements of the output-noise encode the noise
of the output-particle flux, they are always positive real numbers with the same magnitude in both bases. This is a
consequence of the vanishing commutator for o↵-diagonal elements
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which implies that diagonal correlators
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0] ii =
hhxi,out[!]xi,out[!0] ii+ hh pi,out[!] pi,out[!0] ii

2
. (5.38)
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indeed have the same magnitude in both bases. Since it will become handy shortly, we can correspond each element of
the noise-matrix by their respective operators with the notation S

aia
†
j
⌘ (S̃out)ij for the mode basis. In the quadrature

basis, we introduce Svi0wj0 ⌘ (Sout)ij , with indices (i0, j0) = (di/2e , dj/2e), and v, w 2 {x, p}, where d·e is the ceiling
function. Note, that v = x (w = x), if the index i (j) is odd, and v = p (w = p), for an even index i (j), i.e.
(Sout)36 = Sx2p3 .

B. Analytical properties of the output-noise spectrum

In this Section, we stay in the quadrature picture. The output-noise spectrum can be intuitively understood by the
concept of a filter, see Ref. [67]. A filter is an object, which takes the noise spectrum of an input Sin[!], and gives
us the output-noise spectrum Sout[!]. Thus, the output-noise is just the input-noise modified by some frequency-
dependent function. Naturally, the filter is our system - where the latter is called the transfer function. In our case,
this can be written in a more formal way

Sout[!] = G[!]Sin , (5.39)

where G[!] is the transfer function defined by the action (compare with Eq. (5.17))

G[!]Sin ⌘
S[!]SinS

T [�!] + S[�!]SinS
T [!]

2
. (5.40)

Since this transfer is just composed of the S-matrix, we can look at the individual constituents of the noise spectral
density to better understand its behaviour and get a correspondence between the noise spectrum and the S-matrix.
For zero-temperature, only vacua are entering and the occupation-vector vanishes nth = 0. Thus, the input-noise of
Eq. (5.13) becomes

Sin(0) =
NM
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✓
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2

◆
112 =

1

2
112N , (5.41)

where the vacuum-input is denoted as S0 ⌘ Sin(0). This input leads to a frequency-independent, and diagonal
output-noise matrix:

Svac =
1

2
Re
�
112N S[!]S†[!]| {z }

112N

�
= S0 , (5.42)

which we will call the vacuum-output Svac. Thus, for a passive device without parametric interactions (which could
squeeze the vacuum), the system does not filter incident modes and becomes unresponsive, where output-noise is
equal to input-noise for all frequencies. However, this situation changes for some finite temperature of the reservoir,
where small thermal fluctuations are entering (at least) one of the three ports. Since Sin is diagonal, it follows

(Sin)kk =

✓
n̄dk/2e +

1

2

�
112N

◆

kk

, (5.43)

where d·e is the ceiling function - ensuring we end up with correct indices for thermal occupations. By using Eq.
(5.19), the output-noise (in terms of its entries 1  i, j, k, l  2N) simply becomes
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This gives us a full analytical expression for the output-noise
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This expression shows how the output-noise is nothing more than the frequency-response of the system, which is
scaled by the input-contribution entering the ports. Thus, the system redistributes and modulates input-noise via
scattering probabilities, thus, the frequency bandwidth for the output-noise is directly dependent on how responsive
the system acts to frequencies of inputs. Note, that Eq. (5.45) in the mode basis becomes
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For convenience, we can decompose Eq. (5.45) into two parts

Sout[!] = Svac + Sth[!] , (5.47)

where

(Svac)ij =
1

2
�ij , (5.48)

is only the contribution of vacua - acting as a noise floor, and
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is the contribution of thermal noise. Since the S-matrix is unitary for the full model and thus preserves probability
currents, see Eq. (4.20), the trace of the noise-input

Tr{Sin} = 2(n̄1 + · · ·+ n̄N ) +N , (5.50)

has to be equal to the trace of the output-noise. Thus, Eq. (5.45) implies
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= Tr{Sin} . (5.51)
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Naturally, this is not true for the e↵ective model, since the S-matrix does not conserve probability currents.

Similarly to Eq. (5.42), if all reservoir-temperatures are the same, i.e. n̄j = n̄, where n̄ > 0 for all j. Then, the
thermal contribution of the noise, and incidentally also the output-noise itself becomes frequency-independent and
proportional to S0

Sth = n̄Re(112N S[!]S†[!]| {z }
112N

) = 2n̄S0 =) Sout = (2n̄+ 1)S0 . (5.52)

Thus, the system also becomes passive and unresponsive, where fluctuations entering is equal to fluctuations at
the output. The state of the system is now independent of the fluctuations at I/O ports and no modulation or
redistribution will occur. Thus, the system is highly dependent on the temperature bias of surrounding reservoirs.

Now, we are equipped to make the comparison between elements of the output-noise and scattering probabilities.
Similar to previous Sections, the optical isolator will serve as a toy model, where we analyze its behaviour to incident
noise. However, the e↵ective model inherits artifacts from the elimination procedure, which will become apparent in
the output-noise spectrum.

C. Noise spectral density of the optical isolator in the mode basis

As before, we assume �ij = 0 =) ⌫ = 0, µ = �|µ2|. By eliminating the auxiliary mode, we made an additional
implicit assumption: Not only did we eliminate the auxiliary from the set of di↵erential equations, we also assumed that
any fluctuations of the third mode in the Langevin equation vanish, with a3,in[!] = 0 =) hh a3,in[!]a

†
3,in[!

0] ii = 0. A
full treatment, which ensures that the reduced model properly sees the fluctuations of the third mode, is only achieved
when considering the three-mode dissipative ring, see Section VIA. Thus, we need to keep in mind that contributions
of the noise from the auxiliary will be missing.

Consider Fig. 13 (a), showing the Markovian (solid) and non-Markovian (dashed) output-noise elements for � = �R

(� = �L) in the symmetric regime  = i/2. We assume thermal excitations entering only at port 1 (from the left
side) with n̄1 = 10. First, we focus on the Markovian limit for the unidirectional phase � = �R. As clearly visible by
scattering coe�cients, see Fig. 12 (a), only the transmission |Sa2a1 [0]|

2 = 1 does not vanish at resonance. This should
be resembled in the output-noise: We observe, that all thermal fluctuations end up at output 2 with S

a
†
2a2

[0] = 10.5

(green line), and no fluctuations are seen at output 1 (no reflections) with S
a
†
1a1

[0] = 0 (red). So, the system indeed

shows maximized transmittance for the unidirectional limit, where not even vacuum fluctuations can be found at port
1. Whenever this happens, we can say that the noise is fully transferred to a di↵erent port. The only reason S

a
†
1a1

[0]

ends up below the noise floor (grey dashed line) with Svac = 0.5, is because the disregard of a3,in = 0. For the full
model, this element is exactly S

a
†
1a1

[0] = Svac. The output-noise for the non-Markovian (dashed) regime is similar,

yet has a narrower frequency-bandwidth, implying that fluctuations are filtered more strongly. Additionally, there
is a build-up of anti-correlations ReS

a
†
1a2

= ReS
a
†
2a1

< 0 (purple) for finite !/. These anti-correlations become

maximal at exactly the point where curves of the diagonal elements S
a
†
1a1

and S
a
†
2a2

meet, at !/ = ±
p
2 for the

non-Markovian regime, corresponding to eigenvalues, compare Sec. IIIG. This was verified numerically. After this
inflection point, anti-correlations start to disappear and fluctuations of di↵erent modes become uncorrelated again.
The accumulation of (anti-) correlations might be attributed to the growing superposition of states at both outputs
for finite frequencies, making it unclear at which output the information is to be expected. Anti-correlations are thus
interpreted as a lack of knowledge. The magnitude of these correlations is exactly the di↵erence of the input, minus
the outputs we see at each port

|S
a
†
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| = |S
a
†
2a1

| =
���n̄1 + 1/2� (S

a
†
1a1

+ S
a
†
2a2

)
��� . (5.53)

The imaginary part of anti-correlations will be discussed for the three-mode model in Sec. VIA 3, but is shown for
the optical isolator in Fig. 31 (b) inside App. D 4. In comparison, this situation significantly changes for � = �L:
Since we still consider the same input, we would expect no information leaving the second port. If we focus on port
1, the noise reaches its minimum at zero-frequency and coincides with the noise-floor. This happens, since output 1
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(a)

(b) (c)

FIG. 13. Markovian (solid) and non-Markovian (dashed) elements of the output-noise matrix for the optical isolator with
varying values of � and thermal-inputs, plotted against !/. Parameters are C = 1 with  = i/2, and |J | = |µ2|�0/2. (a)
Comparison between �R (Left) and �L (Right) for the input-occupations n̄1 = 10, n̄2 = 0. (Left) Here, fluctuations entering
port 1 are fully transferred to output 2 with S

a†
2a2

[0] = 10.5, and S
a†
1a1

[0] = 0. Output 1 drops below the noise floor (grey

dashed line), since inputs of the auxiliary mode are missing for the e↵ective model. Anti-correlations (purple) build up and are
maximal, where fluctuations of outputs 1 and 2 reach the same value. Non-Markovianity narrows the bandwidth of thermal-
fluctuations. (Right) Here, S

a†
1a1

[0] = 0.5, and S
a†
2a2

[0] = 0, since output 1 sees vacuum from port 2, but output 2 gets no

input from the auxiliary. Fluctuations entering port 1 just disappear, as the phase is unidirectional in the opposite direction.
Positive correlations appear where some fluctuations reach output 2 for finite frequencies. (b) Reciprocal case for � = 0 and
n̄1 = 10, n̄2 = 0. Here, since there is only input at port 1, the outputs 1 and 2 do not have the exact same value, but balance
out for low frequencies. However, more noise is found at output 2 for ! = 0. Both outputs are always above the noise floor.
Real parts of anti-correlations (purple) become maximal for ! = 0. (c) Similar to (a, Left), but with inputs at both ports
n̄1 = n̄2 = 10. The only di↵erence is, that noise at output 2 does not vanish for finite frequencies, as there always is input at
port 2 present. Imaginary parts of anti-correlations can be found in App. D 4.

sees the vacuum entering port 2. However, port 2 coincides with the noise-floor for finite frequencies, yet vanishes
for ! = 0, indicating that the reasoning above is sound: There is no (vacuum) contribution from the third mode
which could end up in output 2. Cross-correlations only show a small peak for zero frequency for the Markovian
limit. Non-Markovianity narrows the bandwidth for output 1, but also introduces correlations between output mode
1 and 2. This introduces two symmetric peaks for the output port 2 for finite frequencies, where the output at 2 and
the correlations again vanish for zero frequency. However, these correlations are positive this time, also indicating
a superposition, but not of the type its either at port 1, or port 2 (as for �R), but of the type its either at port 1
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and 2, or neither. This makes sense, since for finite frequencies, some fluctuations will reach output 2, while most
fluctuations are still at output 1.

For the reciprocal case, see Fig. 13 (b), as expected from the S-matrix, the system equally responds to both directions
of transport. Nevertheless, the noise output is not equal, since we do not have equal input. To understand this, we
start at finite frequencies and work our way to zero-frequency: From the left, fluctuations from port 1 (red line) enter
the system. As the noise at output 1 decreases, output 2 has increasing thermal fluctuations. However, closer to
! = 0, fluctuations still want to enter the system but start to saturate at some point. Here, output 1 starts to reach
a stable value, which no longer changes much. This is similar for output 2, as some fluctuations reach the output,
but at some point the number of fluctuations does not increase anymore. This can be understood as some kind of
“filling” e↵ect: Since the system is in the reciprocal limit, both directions of transport have the same hierarchy and
neither is specially protected. Thus, fluctuations at output 2 can not grow indefinitely, as they can enter the system
again and just leave via output 1. So in a way, the system reaches something similar to a detailed balance of noise for
! = 0. This also makes sense when looking at both peaks of the output-currents centered around ! = 0: The system
responds a little bit to the change in frequency, but is still stabilized. Only a big change in frequency can change
the response again. At exactly ! = 0, anti-correlations become maximal and are shared between both ports, where
output 2 also shows vacuum contributions. Anti-correlations thus have magnitude
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���n̄1 + 1� (S
a
†
1a1

+ S
a
†
2a2

)
��� . (5.54)

In the last panel, see Fig. 13 (c), shows unidirectional transport for � = �R, where both ports have inputs with
n̄1 = n̄2 = 10. Surprisingly, the curve for output 2 has exactly the same shape as the curve showing cross-correlations.
Here, similar to the first Figure, fluctuations at output 1 (red) vanish (with no vacuum contributions) for ! = 0, and
fluctuations become maximal at output 2 (green). Di↵erent to above, the green line does not vanish for finite !, as
there always will be an input present at port 2. This is reasonably not true for port 1, as fluctuations can enter the
system at port 1, while there is no way for fluctuations entering port 2 to reach port 1. Thus, since no transmissions
from input 2 to 1 can occur, the red curve has exactly the same shape as before (a). The same reasoning also applies
to cross-correlations (purple). Similar to the S-matrix, choosing the asymmetric damping regime leads to sharper
peaks and a closer correspondence between Markovian and non-Markovian behaviour, which can be found in App.
D 6. Also notice, that these curves are always symmetric around ! = 0, which is completely di↵erent to the behaviour
we have seen for scattering probabilities. The output-noise in the quadrature basis looks exactly the same and can
thus only be found in Appendix D 5.
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VI. Analysis of thermal noise and transport for selected models

A. Dissipative three-mode ring

For the dissipative three-mode ring, see Fig. 5 (a), we consider the dynamical matrix D in the mode representation
without any squeezing (�ij = 0 =) h2 = 0). Since it becomes block-diagonal, see Eq. (3.46), we only consider a
single block, denoted by D3. As mentioned in Sec. IIIG 1, when all damping rates and interactions are the same
(� = �/3 is equally shared over all interactions), the system becomes translationally invariant. In the unidirectional
and non-Markovian regime, we could refer to this system as an optical circulator, see Ref. [68]. However, a true
circulator has indistinguishable labels, where fluctuations are just permuted over ports. Thus, calling our model
a circulator is a bit misleading, as modes can mutually di↵er in some limits. Thus, we refer to this model as the
dissipative ring. Like before, we consider two impedance-matching conditions: 1. Symmetric damping rates with
 ⌘ i/2, and 2. Asymmetric damping rates with  ⌘ 1,2 = 3/4. Recall, that the non-Markovian reservoir closer
resembles the Markovian limit for the second condition. Similar to the optical isolator, � is the only relevant phase
in this system. The system will become nonreciprocal by employing the same conditions on interactions as before.

1. S-matrix of the dissipative ring in the mode basis

Here, the goal is to obtain an analytical expression of the S-matrix in the mode basis. Also, we assume equal damping
rates  ⌘ i/2. All parameters are expressed in units of  and read |J3i|/ = 1, implying µ = �|µ2| = �1 and
|J12|/ = |µ2| = 1. The dynamical matrix (in units of ) is given by

D3 = �

0

@
1 ie

i�
i

ie
�i� 1 i

i i 1

1

A , (6.1)

and the phase-dependent S-matrix at resonance reads

S̃3[0] =
1

2i+ cos�

0

@
cos� i� e

i�
i cos�� (1 + sin�)

i� e
�i� cos� i cos�� (1� sin�)

i cos�� (1 + sin�) i cos�� (1� sin�) cos�

1

A . (6.2)

This expression already tells us a lot about scattering: For non-trivial phases, reflection coe�cients always vanish, and
transmission probabilities become maximal in only one direction for each pair of modes. Thus, the system becomes
unidirectional with circular transport, i.e. for � = �R = ⇡/2, the only non-zero transmissions are

|S̃a2a1 |
2 = |S̃a3a2 |

2 = |S̃a1a3 |
2 = 1 , (6.3)

meaning that we recover reflection-less circular transmission from a1 ! a2 ! a3 ! a1. As expected, for � ! �L =
�⇡/2, we observe opposite transport

|S̃a3a1 |
2 = |S̃a2a3 |

2 = |S̃a1a2 |
2 = 1 , (6.4)

from a1  a2  a3  a1. This changes for the reciprocal limit, i.e. � = 0, where we get

8i, j : |S̃aiai |
2 =

1

5
, and |S̃aiaj |

2 =
2

5
. (6.5)
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From this we can draw a few conclusions about the S-matrix: As noted before, a complete system conserves probability
currents, see Eq. (4.20). For the dissipative ring, this law holds for all limiting cases: In the unidirectional limit, each
column has exactly one element with a probability of 1, where all other elements vanish, thus summing up each column
gives us exactly 1 each time, so the probability is conserved. In the reciprocal limit, this is also true for all columns.
Also, the S-matrix of the reciprocal limit is symmetric S̃[!] = S̃

T [!], a clear indication for dynamics preserving time-
reversal symmetry, which is not the case in the nonreciprocal limit, see Sec. IVB. As already explained, probability
conservation needs to hold for a complete picture, but can be broken for an e↵ective model. We observed this for the
optical isolator, where the S-matrix can resemble the one of an ideal isolator.

The S-matrix probabilities for di↵erent limits are shown in Fig. 14 for  ⌘ i/2 and ! = 0. Note, that we show
modes and their adjoints. Even though this seems redundant, there is a reason to stress the full picture: Similar to
the reciprocal limit of the optical isolator (see Fig. 12 (d)), S-matrix probabilities for the dissipative circulator also
have an asymmetric line-shape, where modes and their adjoints are treated di↵erently for finite frequencies. Consider
the left panel, see Fig. 14 (a), which corresponds to clockwise transport with � = �R. We see how transmissions
resemble a permutation matrix, transferring fluctuations in a circular manner between resonators. Note, that the 2⇥2
sub-block for modes 1 and 2 fully recaptures the behaviour of the optical isolator with its non-unitary S-matrix. In
Fig. 14 (b), we show the reciprocal phase � = 0. Here, reflection coe�cients are finite and have the same magnitude
|S̃aiai |

2 = 1/5. Transmission coe�cients are also finite and share the same magnitude |S̃aiaj |
2 = 2/5. The right Fig.

14 (c), with � = �L, shows the opposite behaviour compared to the first, behaving like an anti-clockwise permutation
matrix. Other cases can be found in Appendix E 1 a.

(a) (b) (c)

FIG. 14. S-matrix probabilities depending on the phase �, for the parameters ! = 0 and C = 1 with rates  ⌘ i/2. (a)
Unidirectional limit for � = �R (b) Reciprocal limit for � = �0 (c) Unidirectional for � = �L. For limits (a) and (c), reflection
coe�cients vanish and transport becomes unidirectional. In reciprocal limits, i.e. (b), reflection coe�cients do not vanish and
there is no preferred in transmission direction.

a. Unidirectional limit. To understand how scattering probabilities depend on frequency, consider Fig. 15. Here,
Markovian (solid) and non-Markovian (dashed) scattering coe�cients are shown in dependency of !/, for � = �R and
symmetric damping rates  ⌘ i/2. The first row, see Fig. 15 (a), shows the reflections. As expected, all reflections
vanish on resonance in the unidirectional limit. In the non-Markovian regime, reflections all have the same curve with
three distinct dips at !/ = 0,±

p
2, as before, consider Sec. IIIG. For the Markovian regime, where the auxiliary

becomes stationary, all curves are smoother, as the dips seem to meet at the origin. However, the reflection coe�cient
of the auxiliary starts to behave strikingly di↵erent compared to the others, where the curve becomes flatter, but
vanishes over a wider bandwidth of !. By moving away from resonance, reflections start to grow and become maximal
|Saiai |

2 = 1 far o↵-resonance, for all modes. Transmission coe�cients are shown in the second and third row, see Fig.
15 (b). Here the lower row shows the opposite transport direction compared to the middle row. The transmission
coe�cients can be gathered into groups of three, where one group becomes maximal (purple, teal and green curve) and
the other minimal (yellow, red, brown), on resonance. Thus, we observe unidirectional transport from 1! 2! 3! 1,
with vanishing transmissions for the opposite direction. In the non-Markovian regime and o↵-resonance, we again see
distinct peaks at the same positions as before !/ = ±

p
2. Similar to reflections, curves of one group have the same

line-shape in the non-Markovian limit. However, far o↵-resonance, all coe�cients vanish. The transmission behaviour
changes in the Markovian limit, as the third mode becomes stationary and all transmission coe�cients from- or to
the auxiliary become wider and dips start to overlap more. Thus, the first column (elements between mode 1 and
2, which fully describe the transmissions of the optical isolator) acts di↵erently from the other coe�cients in their
respective group. The element |Sa1a2 |

2 = 0 vanishes for all frequencies in the Markovian limit, where the remaining
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elements of the same group are non-zero for finite frequencies. Far o↵-resonance, all transmissions vanish.

(a)

(b)

FIG. 15. Markovian (solid) and non-Markovian (dashed) scattering probabilities for � = �R and symmetric damping rates
i/2 = , plotted against !/. (a) Reflection coe�cients. On resonance, all reflections vanish. O↵-resonance, reflections
for all modes increases and become maximal |Saiai |2 = 1 far o↵-resonance. (b) Transmission coe�cients, where the lower
row shows the opposite transport direction compared to the first row. Transmissions can be gathered into groups of three,
where one becomes maximal (purple, teal, green) and the other minimal (yellow, red, brown) on resonance. Thus, we observe
unidirectional and clockwise transport from 1 ! 2 ! 3 ! 1, where transmission in the opposite direction vanishes. On
resonance, the Markovian and non-Markovian limits always have the same value. Far o↵-resonance, all transmissions vanish.
In the non-Markovian case, transmissions of the same type show the same behaviour. However, in the Markovian case, the
auxiliary becomes stationary and allows for some reciprocal transport at finite frequencies between itself and other modes, as
these transmission coe�cients start to increase for a wide range of !/.

b. Reciprocal limit. We have yet merely glossed over the dips inside scattering coe�cients, but before understanding
how they arise, we take a look at scattering in the reciprocal limit. Figure 16 shows heatmaps of the non-Markovian
scattering probabilities with � = 0 and  ⌘ i/2, for varying values of !/ = 0,±2. The heatmaps clearly show
that scattering for modes and adjoints behaves exactly the same at resonance. For finite frequencies, modes and
adjoints are treated the opposite way. In Fig. 16 (a) with !/ = �2, modes are transmitted with a higher probability,
where adjoints are more strongly reflected. The opposite behaviour happens in Fig. 16 (c) with !/ = 2. Thus,
scattering probabilities behave similar to the ones of the optical isolator: If � moves away from the unidirectional
limit, scattering probabilities become asymmetric and start to either tilt or move (or both) in a preferred direction
when sweeping across frequency. This e↵ect is most profound if the phase reaches a trivial limit with � = 0,±⇡.
As an example, consider Fig. 17, with damping rates  ⌘ i/2 and a phase � = 0. The first row shows reflections,



68

(a) (b) (c)

FIG. 16. Scattering probabilities for  ⌘ i/2 in the reciprocal limit � = �0 for di↵erent values of ! (a) O↵-resonant case for
!/ = �2 (b) Resonant case for !/ = 0 (c) O↵-resonant case for !/ = 2. We see how modes and adjoints are treated the
opposite way when moving away from the resonant case.

(a)

(b)

FIG. 17. Markovian (solid) and non-Markovian (dashed) scattering probabilities for � = 0 and  ⌘ i/2. Note, the same
probabilities for adjoint modes are just flipped around the x-axis. (a) Reflections with a characteristic o↵set/tilt due to
degenerate quasi-momenta eigenstates, see Sec. IIIG. (b) Transmissions with a characteristic o↵set/tilt coinciding with the
peaks/dips of reflections.

where the remaining rows show transmissions. In Fig. 17 (a), we first focus on the non-Markovian regime (dashed).
Reflection coe�cients are the same in all cases, but have pronounced dips with a non-zero peak between them.
However, this peak is not centered at ! = 0, but slightly to the left for ! < 0. Thus, the curves are not symmetric
around the origin, which is a surprising feature at this point. The situation becomes more apparent for the Markovian
regime (solid), where the curves for modes 1 and 2 become tilted, have a lower (however non-zero) minima at ! > 0,
and have a missing dip for negative frequencies. The auxiliary behaves (almost) opposite to that, with a flipped
(but shallower) curve around the x-axis, with a minima for ! < 0, and a missing dip for positive frequencies. All
reflection coe�cients maximize far o↵-resonance, as expected, but never vanish for any values of !. At resonance,
there is no di↵erence between the non-Markovian and Markovian regime, just as suggested by the global damping rate
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�[0] = �0 of the optical isolator in the e↵ective picture. Transmissions, see Fig. 17 (b), behave as expected: Transport
is reversible for each pair of resonators, since all transmission probabilities between a given pair of resonators are
completely alike. Also, each dip (peak) for reflections coincide perfectly with a peak (dip) for transmission, which
is exactly what one would expect. In the non-Markovian limit (dashed), every transmission coe�cients has exactly
the same shape and all are centered to the left. This again changes for the Markovian regime (solid), where the
curves for modes 1 and 2 are tilted and centered to the right, again coinciding with the reflection coe�cients. Just as
observed several times, the third mode behaves opposite to that, where all transmissions to or from the auxiliary have
the same shape, are all centered to the left, and are in general more shallow compared to the aforementioned ones
of modes 1 and 2. Note, that all these descriptions of the reciprocal case for � = 0 are flipped at the y-axis for � = ±⇡.

c. Understanding the dips/peaks inside scattering probabilities. Since we have now talked about the general be-
haviour, we can understand the dips of the scattering probabilities. Understanding how and why they appear will
give us a lot of insight into the scattering behaviour. For this, we restate the analytical expression of the S-matrix
from Eq. (4.5), and the susceptibility matrix from Eq. (4.3), with

S̃[!] = 11�
p
K̃�̃[!]

p
K̃ , �̃[!] = (i!11�D)�1

.

The S-matrix mainly depends on the susceptibility, which itself only depends on the (inverse) sum of two things: The
frequency i!, and the dynamical matrix D. Thus, we can safely say that the dynamical matrix just modulates the
frequency i! (in analogy to simple response functions seen in physics). By diagonalizing the dynamical matrix, we
can clearly see the modulating e↵ect of the system: The imaginary part of the eigenvalues, which are multiplied by
i, just o↵set i! (in analogy to a detuning). Thus, they encode the frequency response of the system and in turn the
positions of the peaks. The real parts however, are not multiplied by i and thus not oscillatory in nature. Therefore,
since the susceptibility matrix is proportional to the inverse of D, increasing the real part of the dynamical matrix
will lead to a broadening of the susceptibility. This can be achieved by increasing damping rates i. In Sec. IIIG 1,

FIG. 18. Frequency (!/) and phase (�n ⌘ �/⇡) dependence of transmission probabilities between a given pair of modes and
their respective adjoints, for damping rates  ⌘ i/2.

especially in Fig. 10, it was shown how the system can be diagonalized with quasi-momenta states. The energies of
the diagonal dynamical matrix Dk are symmetric around 0 only for the nonreciprocal limit with !̄m = 0,±

p
2|J | (for

J = |J |e
�/3
⌘ J12 = J31 = J

⇤
32), which is exactly the position of the peaks/dips in Fig. 15. By moving away from

that, two out of three quasi-momenta states start to move closer till they become degenerate at the reciprocal limit,
explaining the position of the peaks/dips in Fig. 17. The energies at that limit are not equidistant from 0, and there is
now a bigger weight either for negative or positive !/. This explains the asymmetric look of scattering probabilities
in the reciprocal limit, see the heatmap in Fig. 16, where we see that depending on the sign of !, modes and adjoints
have the opposite scattering behaviour. All this can be seen as a consequence of the formula S̃

⇤[!] = ⇤xS̃[�!]⇤x,
where modes and adjoints have an opposite frequency dependence of the S-matrix in the mode representation. In Fig.
18 we see that more strikingly, where a single (non-Markovian) transmission probability between modes a1 and a2
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is compared to the same probability between adjoints a†1 and a
†
2, depending on the value of the phase �. The green

curves show that the unidirectional limit symmetrizes the scattering. If we change the phase, curves start to tilt and
become maximally asymmetric in the reciprocal limit. Note, that for all � we can relate the following in absence of
squeezing

|S̃
a
†
ia

†
i
[!]|2 = |S̃aiai [�!]|

2
. (6.6)

2. S-matrix of the dissipative ring in the quadrature basis

As established several times already, the dynamical matrix in the quadrature basis is real M = M
⇤, and the S-matrix

fulfills S⇤[!] = S[�!]. Since quadrature operators are superpositions of modes and their adjoints, this has implications
for scattering probabilities. Without squeezing, we can express probabilities in the quadrature basis by transforming
|S̃ai,aj |

2 with T. By using Eq. (6.6), it follows

|Sxixj [!]|
2 = |Spipj [!]|

2 =
1

4

⇣
|S̃aiaj [!]|

2 + |S̃aiaj [�!]|
2 + 2Re(S̃aiaj [!]S̃aiaj [�!])

⌘
, (6.7a)

|Sxipi [!]|
2 = |Spixi [!]|

2 =
1

4

⇣
|S̃aiai [!]|

2 + |S̃aiai [�!]|
2
� 2Re(S̃aiai [!]S̃aiai [�!])

⌘
, (6.7b)

|Sxipj [!]|
2 = |Spixj [!]|

2 = 0 . (6.7c)

FIG. 19. Selection of non-Markovian scattering probabilities in the quadrature basis as a sum of S-matrix elements in the
mode basis for � = 0 and  ⌘ i/2. Probabilities between other quadratures are either zero or the same and are thus
not shown here. (Left) Reflection between the same type of quadratures |Sx1x1 [!]|2 = |Sp1p1 [!]|2. Here, the third label is
2Re(S̃a1a1 [!]S̃a1a1 [�!]). (Middle) Transmission coe�cients between the same type of quadratures |Sx1x2 [!]|2 = |Sp1p2 [!]|2.
Here, the third label is 2Re(S̃a1a2 [!]S̃a1a2 [�!]). (Right) Transmission coe�cient between di↵erent quadratures of the same
port 1 with |Sx1p1 [!]|2 = |Sp1x1 [!]|2. Note, that Spixi [!] = �Sxipi [!] 8i. As these elements are non-vanishing, this indicates
that there is a phase-shift in the quadrature space for a reciprocal system. Here, the third label is �2Re(S̃a1a1 [!]S̃a1a1 [�!]).

This implies that scattering probabilities in the quadrature picture are always symmetric in frequency, regardless of the
phase �. For this, see Fig. 19, with parameters  ⌘ i/2, in the reciprocal limit � = 0. Here, we have shown examples
of how summing up specific probabilities in the mode picture (solid lines) yield the always symmetric probabilities in
the quadrature picture (dashed lines). We can write the matrix of scattering probabilities (P[!])ij ⌘ |(S[!])ij |2 as a
block-matrix containing sub-matrices Pij [!] of scattering coe�cients. The resonant case is simply

P[0] =

0

@
0 0 P13[0]

P21[0] 0 0
0 P32[0] 0

1

A , with Pij [!] ⌘

✓
|Sxi,xj [!]|

2
|Sxi,pj [!]|

2

|Spi,xj [!]|
2

|Spi,pj [!]|
2

◆
. (6.8)

For the unidirectional limit � = �R, the blocks have the same position as elements in the mode basis. This ensures
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unidirectional scattering with perfect transmission between blocks, but which quadratures inside the blocks retain
this information can change depending on the value for the local phases ↵ij . Consider, � = ↵12 = ⇡/2, and ↵31 =
↵32 = ±⇡/2, where blocks at resonance become diagonal P13 = P21 = P32 = 112. This changes for � = ↵12 = ⇡/2,
and ↵31 = ↵32 = 0,±⇡, since quadratures get flipped with P21 = 112, and P13 = P32 = �x. However, what happens
if ↵3j is between ⇡ and ⇡/2? For ↵31 = ↵32 = ±⇡/4, probabilities inside each respective block are evenly distributed,
resulting in P21 = 112, and P13 = P32 = (112 + �x)/2. Thus, which ↵ij we set to ↵ij = �, decides which the block
becomes diagonal, where Pij = 112, and remaining blocks Pi0j0 depend on the specific value of ↵i0j0 . Formally, this
becomes

Pij = cos2(↵ij)�x + sin2(↵ij)112 . (6.9)

Consider equally distributed phases �/3 = ↵12 = ↵31 = �↵32, with J12 = J31 = J
⇤
32. Then, all sub-matrices for any

unidirectional limit � 2 {�R,�L} has the same form Pij = (3�x + 112)/4.

(a) (b) (c)

FIG. 20. Scattering probabilities for quadratures |(S[0])ij |2, with  ⌘ i/2, ↵31 = ↵32 = ⇡/2 and varying phases �. (a)
Unidirectional limit � = �R, showing nonreciprocal transport between quadrature blocks, where quadratures always drive
the same quadrature of another mode. (b) Reciprocal limit � = 0. Here, reflections always flip quadratures, with reciprocal
transmission between di↵erent quadratures for 1 $ 2, and same quadratures for 1 $ 3, and 2 $ 3. This flip for 1 $ 2 is
a consequence of setting ↵12 = � = 0 6= ↵3i. (c) Unidirectional limit � = �L, having the same behaviour as (a) only in the
opposite direction.

Now, we look at limiting cases of the transport. As shown in Fig. 20, heatplots for quadrature scattering coe�cients
are compared for unidirectional and reciprocal limits. The parameters are ! = 0,  ⌘ i/2, and ↵31 = ↵32 = ⇡/2.
The left Fig. 20 (a) shows the unidirectional limit � = ↵12 = �R, with distinct nonreciprocal blocks, which enforce
transport from 1 ! 2 ! 3 ! 1 for the same quadrature. The middle plot, see Fig. 20 (b), shows the reciprocal
limit with non-vanishing reflection coe�cients. Here, the scattering probabilities are always symmetric in frequency.
The last plot, see Fig. 20 (c), shows the opposite transport direction compared to (a). If we now focus on the
frequency dependence of scattering probabilities, we find that the unidirectional limit behaves exactly the same in
both bases, if considering the corresponding quadratures, see Appendix E 1 c. For the reciprocal limit, the situation
changes and all elements are always symmetric in frequency, consider Fig. 21. In the non-Markovian regime (dashed
curves), reflections are all the same, which also holds for transmissions. All probabilities are symmetric in frequency.
As before, in the Markovian limit (solid curves), the auxiliary becomes static and probabilities broaden and become
flatter. This coincides with a stronger transmission probability from 1 to 2, and vice versa.

To conclude this Section, we compare the scattering probabilities between the bases in the reciprocal limit with � = 0
and  ⌘ 1,2/2. As Fig. 22 shows, increasing the auxiliary damping rate 3/, also increases the overlap of peaks
inside transmission coe�cients |S̃a1a2 [!]|

2 and |Sx1x2 [!]|
2. The biggest e↵ect happens for values below the impedance-

matching condition 3 < 2. For the impedance-matched case 3 = 2 (green line), the coe�cient |S̃a1a2 [!]|
2 is not

centered at ! = 0. This is di↵erent for quadratures, as peaks already start at symmetric positions and begin to
overlap, yet remain equidistant from ! = 0. Our result closely resembles Fig. 3 of Chen et al. [63], where the same
tilting of scattering probabilities outside exceptional points was observed for a similar optomechanical setup.
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(a)

(b)

FIG. 21. Markovian (solid) and non-Markovian (dashed) scattering probabilities |Sxixj |2 for quadratures with � = 0 and
 ⌘ i/2. Note, that all coe�cients are the same for x and p quadratures. Not shown coe�cients are zero. (a) Reflection
coe�cients for x-quadratures, which are the same in the non-Markovian regime, but quadratures of the auxiliary behave
di↵erently for the Markovian limit, as already observed. (b) Transmissions for x-quadratures, which again are the same in the
non-Markovian regime, and scattering with the auxiliary behaves di↵erently for the Markovian limit.

FIG. 22. Change of the non-Markovian transmission probability from 2 ! 1 by increasing 3, in the mode (left) and x-
quadratures (right) for  ⌘ 1,2/2, plotted against !/. By increasing 3, curves overlap more and the relative distance of
peaks from the origin starts to move to the origin in both bases. In the mode basis, they are not equidistant from ! = 0
and are asymmetric for the impedance-matched case (green line) with 3 = 2, whereas transmissions remain symmetric for
quadratures for all values of 3. If the auxiliary becomes increasingly lossy, distinct peaks merge and move to a single maximum
centered around ! = 0, for both bases.
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3. Output-noise spectrum of the dissipative ring

Before we bluntly jump into the output-noise spectrum of the dissipative ring, we make a small remark: Since the
covariance matrix is composed of the input-noise and the S-matrix, we can take a deeper look into the composition
of the output-noise matrix. Knowing how these elements come about will be useful for our understanding. For this,
we stay in the quadrature representation as it o↵ers a simple way of applying an approximation to the output-noise.
Note, that the following can be analogously done in the mode basis. For this, consider an extreme case for the input,
where incident thermal noise at port 1 is assumed to be much larger than vacuum fluctuations entering the system,
with no thermal noise entering remaining ports. Also, we impedance-match by setting damping rates to  ⌘ i/2
with a coorperativity of C = 1. This regime can be formally written as

n̄1 �
1

2
� n̄2 = n̄3 ⇡ 0 . (6.10)

Hence, we can outright dismiss the vacuum contribution to the input-noise

Sin ⇡ n̄1112 � 0 · 114 , (6.11)

where the input vector nth = (n̄1, n̄1, 0, . . . , 0)T , has non-zero entries only for x1 and p1. By dismissing the vacua and
using Eq. (5.45), it follows for the output-noise matrix

(Sout[!])ij ⇡ n̄1

⇣
Re
n
(S[!])

i1

�
S
†[!]

�
1j

o
+Re

n
(S[!])

i2

�
S
†[!]

�
2j

o⌘
, (6.12)

where the diagonal elements (thermal noise at a given output-port) are just

(Sout[!])ii ⇡ n̄1

�
|(S[!])i1|

2 + |(S[!])i2|
2
�
, (6.13)

By using this approximation, we can compare the output-noise of the first port Sx1x1 (Sp1p1) with scattering prob-
abilities |Sx1,x1 |

2 (|Sp1,x1 |
2) and |Sx1,p1 |

2 (|Sp1,p1 |
2), and do the the same for the remaining ports Sx2x2 (Sp2p2) and

Sx3x3 (Sp3p3). Since equation above implies, that quadratures of the same mode are equal Sxixi = Spipi , it is su�cient
to only consider the x - quadratures for the moment. More precisely, we get

(Sout[!])11 ⌘ Sx1x1 [!] = n̄1

�
|Sx1x1 [!]|

2 + |Sx1p1 [!]|
2
�
,

(Sout[!])33 ⌘ Sx2x2 [!] = n̄1

�
|Sx2x1 [!]|

2 + |Sx2p1 [!]|
2
�
,

(Sout[!])55 ⌘ Sx3x3 [!] = n̄1

�
|Sx3x1 [!]|

2 + |Sx3p1 [!]|
2
�
,

(6.14)

which means that the output-noise for port i is just the sum of transmission probabilities of both quadratures coming
from port 1, re-scaled by the thermal noise entering port 1. However, remember that we do not consider any single-
mode squeezing, thus, terms like |Sxipi |

2 = |Spixi |
2 = 0 8i always vanish, even though they contribute to the noise

in general, see Eq. (5.45). In Fig. 23, this is shown for Sx2x2 in the unidirectional limit � = �R, where other diagonal
elements can be found in Appendix E 1 d. As already explained for the optical isolator, the output-noise can never
drop below the noise floor for a full description.

a. Understanding limits in the mode-basis. Since we have seen the composition of diagonal noise-elements for the
unidirectional limit, we can try to understand these limiting cases better. For this, consider the output-noise matrix
of Fig. 24 in the mode basis, with ! = 0,  ⌘ i/2, and a thermal-input n̄1 = 10, n̄2 = n̄3 = 0. The first heatmap, see
Fig. 24 (a), shows the unidirectional limit � = �R. Here, all elements except the diagonal ones vanish. Input noise
fully ends up at output 2 with S

a2a
†
2
= S

a
†
2a2

= 10.5, where remaining diagonal elements only show the contribution

of vacuum noise coming from other ports. However, the noise matrix becomes complex for any value of � outside
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FIG. 23. Markovian (solid) and non-Markovian (dashed) output-noise Sx2x2 , for the unidirectional limit � = �R, damping
rates  ⌘ i/2, with little noise entering port 1: n1 = 1 , n2 = n3 = 0, plotted against frequency. In general, the output-noise
does not only consist of (scaled) scattering probabilities but also on incident vacuum, where the latter is kept to show the e↵ect
of the noise floor on the output-noise. Also, even though the approximation above only applies to high thermal-inputs, the
e↵ect is most visible for low noise. Thus, n1 is kept small compared to other parameters. (1st Fig.) Output-noise Sx2x2 of port
2 with the vacuum contribution. (2nd Fig.) Transmission coe�cient |Sx2x1 |2, for x1 ! x2. (3rd Fig.) Transmission coe�cient
|Sx2p1 |2 = 0 between di↵erent quadratures p1 ! x2. Note, that this element is zero, since we consider no single-mode squeezed
input. (4th Fig.) Incident vacuum noise contribution Svac acting as a noise floor. Thus, output-noise should never drop below
this lower bound.

(a) (b) (c) (d)

FIG. 24. Output-noise matrix in the mode basis for zero-frequency ! = 0, damping rates  ⌘ i/2, thermal-input n̄1 = 10,
and n̄2 = n̄3 = 0, for di↵erent limiting cases of �. (a) Nonreciprocal limit � = �R. Where all elements except the diagonal
ones vanish. The input signal fully ends up at S

a2a
†
2
= 10.5, where the remaining diagonal elements only show the contribution

of the noise floor. (b) Real part of the noise matrix in the reciprocal limit � = 0. Cross-correlations between the port
receiving an input and possible output ports are anti-correlated. Remaining cross-correlations are positively correlated. The
noise of output 1 shows back-reflections, and other outputs show equal noise. (c) Imaginary part of the noise matrix in the
reciprocal limit � = 0. Since elements of the noise-spectrum become complex for any values of � outside the nonreciprocal
limit, we see that the imaginary part for cross-correlations of the noise between modes and adjoints has opposite sign, with
ImS

aia
†
j
= ImS

a†
jai

= �ImS
aja

†
i
= �ImS

a†
iaj

, see Fig. 26 for more details. (d) Nonreciprocal limit � = �L, with the opposite

behaviour compared to (a), showing only output at S
a3a

†
3
.

the unidirectional limit, thus, for � = 0, we consider the real and imaginary part of the noise matrix. We start at
the real part, see Fig. 24 (b). Here, cross-correlations between the port receiving an input (here port 1) and possible
output-ports are anti-correlated. The reason why these elements become anti-correlated was already discussed in
Sec. VC, compare Fig. 13. Remaining cross-correlations are positively correlated. The output-noise of port 1 shows
back-reflections, and other output-ports show equal noise. The imaginary part in the reciprocal limit, is shown in
Fig. 24 (c). Since elements of the output-noise spectrum become complex, we see phase shifts for cross-correlations
of the noise, with ImS

aia
†
j
= ImS

a
†
jai

= �ImS
aja

†
i
= �ImS

a
†
iaj

, where cross-correlations between a pair of modes

behave the opposite way compared to cross-correlations of their respective adjoints. The last heatmap shows the
nonreciprocal limit in the opposite direction with � = �L, showing only an output at S

a3a
†
3
= S

a
†
3a3

= 10.5.

As before, the unidirectional limit is compared to the reciprocal limit for frequency-dependent elements of the noise
matrix. Noise-correlations for quadratures can be directly related to noise-correlations for modes, see Appendix E 1 e.
Thus, we consider the output-noise in both bases at the same time. First, recall that diagonal elements of the noise
matrix can be seen as the noise of the output particle flux, implying that diagonal elements are always real and lower
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(a)

(b)

(c) (d) (e)

FIG. 25. Comparison of Markovian (solid) and non-Markovian (dashed) output-noise elements (first and second row) and
scattering probabilities (last row) for � = �R,  ⌘ i/2, and n̄1 = 10, n̄2 = n̄3 = 0. (a) Here, fluctuations at outputs are
shown, where noise incident to 1 is fully transferred to output 2, with S

a2a
†
2
[0] = 10.5. The remaining outputs only show vacuum

fluctuations S
a1a

†
1
[0] = S

a3a
†
3
[0] = 0.5 from other ports. Non-Markovian elements show characteristic peaks/dips. Fluctuations

at port 2 vanish for finite frequencies, where they remain at output 1. (b) Cross-correlations showing the same behaviour as
the optical isolator (Sec. VC), where noise is anti-correlated, since noise is superposed and appears either at output 1 or 2.
Correlations vanish for ! = 0. (c), (d), and (e) Show scattering probabilities, compare with Fig. 15.

bounded by the noise floor. Additionally, since the noise matrix is symmetric in operator-ordering, the element (i, j)
is always the same as the element (j, i). However, changing labels i$ j, produces di↵erent e↵ects depending on the
basis, where elements are complex conjugated for modes, but undergo a sign change for quadratures. These general
properties can be summed up as (for all i, j)

Saiaj = S
a
†
ia

†
j
= 0 , Sxipi = 0 , 8 i, j , (6.15a)

S
aia

†
j
= S

a
†
jai

, Sviwj = Swjvi , 8 i, j , where v, w 2 {x, p} , (6.15b)

S
aia

†
j
= S

⇤
aja

†
i
, Sviwj = �Svjwi , i 6= j , where v 6= w 2 {x, p} . (6.15c)
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(a)

(b)

(c) (d) (e) (f)

FIG. 26. Comparison between Markovian (solid) and non-Markovian (dashed) output-noise matrix elements (first and second
row) and scattering probabilities (last row) for � = 0,  ⌘ i/2, and n̄1 = 10, n̄2 = n̄3 = 0. (a) Here, fluctuations at outputs
are shown, with the same behaviour as in Fig. 13, with the di↵erence that the third mode has a broader curve than the
other modes. (b) Cross-correlations where the real part behaves similar to Fig. 13. However, this time, there are additional
imaginary parts, which are maximized for the reciprocal limit and vanish for the unidirectional limit. In a sense, they track the
phase-di↵erence between mode i and adjoint mode j, which seems to disappear when modes and adjoints have symmetrically
treated scattering probabilities. (c) Reflection at output 1. (d) Transmission from 1 ! 2. (e) Transmission from 2 ! 1. (f)
Transmission from 2 ! 1 for adjoint modes.

Note, that the noise for di↵erent quadrature types is the same Sxixj = Spipj 8i, j. Thus, we need to only show a
limited amount of output-noise elements. Consider Fig. 25 in the mode basis, in the unidirectional limit � = �R,
with damping rates  ⌘ i/2. Again, Markovian (solid) and non-Markovian (dashed) elements of the noise-matrix are
shown. The first row, see Fig. 25 (a), illustrates thermal fluctuations S

aia
†
i
[!] at outputs. As expected for an incident

input at 1, only output 2 shows thermal noise with S
a2a

†
2
[0] = 10.5, where other outputs show vacuum fluctuations

S
a1a

†
1
[0] = S

a3a
†
3
[0] = 0.5. Thus, thermal fluctuations are fully transferred to output 2, without any leakage to other

outputs. This fully coincides with the expected scattering behaviour, see Figs. 25 (c), (d), and (e), where the only
allowed transmission is 1! 2. As before, non-Markovian e↵ects introduce more distinct dips/peaks due to eigenvalues
of the dynamical matrix. Cross-correlations behave the same way as for the optical isolator, see the discussion for
Fig. 13 in Section VC.
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However, o↵-diagonal elements can become complex for any value of � outside the unidirectional limit. Consider
Fig. 26, showing Markovian (solid) and non-Markovian (dashed) elements of the output-noise matrix for � = 0 and
 ⌘ i/2. Each element is decomposed into real and imaginary parts, which can be related to quadrature elements
(see Appendix E 1 e), by using Eqs. (6.15) and Eq. (3.65), resulting in (for v, w 2 {x, p})

ReS
aia

†
j
[!] = Svivj [!] , and ImS

aia
†
j
[!] = �Sxipj [!] . (6.16)

Here, diagonal elements behave the same way in both bases, as seen in the noise of the optical isolator, compare Fig.
13 with Fig. 32. Only noise at output 3 di↵ers from the rest by having a broader curve. As mentioned, o↵-diagonal
elements are complex for the reciprocal limit, see Fig. 26 (b). Why are they real in the unidirectional limit? We
propose the following explanation: Since the imaginary part of cross-correlations between the noise of mode i and
noise of the adjoint j, is composed of cross-correlations between di↵erent quadrature types xi, pj , this can be related
to the di↵erence of S-matrix amplitudes between modes or adjoints. Suppose we have a S-matrix amplitude for a
process between two modes ai ! aj , then, this will be compared to the amplitude for a

†
i
! a

†
j
. This was shown in

Appendix E 1 e. Formally speaking, we can say S
aia

†
j
= Sxixj � iSxipj , see Eq. (E3), where

Sxipj = �
n̄i

2
Im
n
S̃aiai [!] S̃

⇤
ajai

[!] + S̃aiai [�!] S̃
⇤
ajai

[�!]
o

, (6.17)

is the imaginary part for an input n̄i > n̄j = 0, see Eq. (E3). These elements only exist if the scattering between
modes and between adjoints di↵er. This can also be seen for transmission coe�cients in Fig. 26 (e) and Fig. 26 (f),
where the scattering probabilities are flipped along the x - axis. As we know, this tilt disappears for the unidirectional
limit, as well as any imaginary parts in the correlations. Since the reciprocal limit is maximally asymmetric for
scattering probabilities, it also has the highest imaginary parts. Both features disappear at the same time for the
nonreciprocal limit.

As a concluding remark, note that a deeper analysis into the disappearance of imaginary parts for correlations could
hint at the exact relationship between output-operators and exceptional points in general.
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B. Dissipative directional transistor

In this Section we will introduce a novel, four-mode model which enables us to not only observe directional transport
but also the cancellation of any transport in some direction of a chosen pair of ports. For this, consider Fig 27,
where four modes are coherently coupled by beam-splitter interactions and where each mode is again damped by a
coupling to their own local reservoir. This model can be understood as an extension of the three-mode model, where
the additional 4th mode acts as some kind of phase-splitter of the original gauge-phase �, which can now be written
as the sum of the individual phases � = ⌧1 + ⌧2 + ⌧3. This lets us control the phases individually and as it turns out,
leads to highly interesting regimes. We start with the interaction picture Hamiltonian which can be written as

HT = J12a
†
1a2 + J31a

†
3a1 + J32a

†
3a2 + J41a

†
4a1 + J42a

†
4a2 + J43a

†
4a3 +H.c. , (6.18)

where the subscript of HT stands for transistor, and whenever we will use the strong set of tools defined above and
introduce some new quantity, we will use this subscript for this model. Similar to above we get the following equations

⌧3

⌧1 ⌧2

a1 a2

a3

a4

1 2

3

4

J12

J31 J⇤
32

J41 J42

J43

FIG. 27. Directional transistor model with four
modes, where each mode aj is coherently coupled to
another mode ai via a beam-splitter interaction Jij

and is locally damped with strength j . In an in-
tuitive manner, due to the addition of mode a4, the
phase � is “split up”, giving us more control over
the transport behaviour of the system, as more lim-
iting cases are possible. Thus, the model has three
distinct gauge-invariant phases ⌧i, which can be in-
dividually tuned to achieve aforementioned di↵erent
regimes. Alongside the known reciprocal and (usual)
unidirectional regimes (like the three mode model),
there are also novel o↵ -regimes, where any transport
between a pair of given modes fully vanishes. These
regimes are always highly dependent on the pair of
modes considered, as an o↵ -regime for a given pair
of modes implies a nonreciprocal regime for a di↵er-
ent pair. Suppose, that transport between a1 and a2

vanishes, then there also will be no transport between
a3 and a4. However, there is unidirectional transport
1 ! 4 ! 2 ! 3 ! 1.

of motion via the Langevin equation

hȧ1i = �
1

2
ha1i � iJ12 ha2i � iJ

⇤
31 ha3i � iJ

⇤
41 ha4i , (6.19a)

hȧ2i = �
2

2
ha2i � iJ

⇤
12 ha1i � iJ

⇤
32 ha3i � iJ

⇤
42 ha4i , (6.19b)

hȧ3i = �
3

2
ha3i � iJ31 ha1i � iJ32 ha2i � iJ

⇤
43 ha4i , (6.19c)

hȧ4i = �
4

2
ha4i � iJ41 ha1i � iJ42 ha2i � iJ43 ha3i , (6.19d)

which we will also write in a concise manner by introducing a new vector aT := (a1, · · · , a4, a
†
1, · · · , a

†
4)

T (where we
keep the daggered modes just for generality, even though it is a redundancy for this explicit model). Then with
K̃T = 112 ⌦ diag(1,2,3,4), we can again write it in the compact form

hȧT(t)i =

✓
�i⇤zHT �

1

2
K̃T

◆
haT(t)i ⌘

✓
AT �

1

2
K̃T

◆
haT(t)i ⌘ DT haT(t)i . (6.20)
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Similar to above, by transforming the modes via haji ! haji ei�j , see Appendix E 2 a, we can isolate the Aharonov-
Bohm phases and get the following interaction parameters

J12 = |J12|e
i⌧3 , J31 = |J31|e

i(⌧1+⌧2) , J32 = |J32| , (6.21)

J41 = |J41| , J42 = |J42| , J43 = |J43|e
�i⌧2 , (6.22)

with the phases

⌧1 ⌘ arg(J31J
⇤
41J43) = ↵31 � ↵41 + ↵43 (mod 2⇡) , (6.23)

⌧2 ⌘ arg(J⇤
32J42J

⇤
43) = �↵32 + ↵42 � ↵43 (mod 2⇡) , (6.24)

⌧3 ⌘ arg(J12J41J
⇤
42) = ↵12 + ↵41 � ↵42 (mod 2⇡) . (6.25)

As mentioned already, summing up these phases gives us the Aharonov-Bohm phase from the three-mode model.
Again, by finding an adequate e↵ective model, we get an understanding of the possible transport regimes of this
system. Choosing which modes one needs to eliminate to obtain the highest number of distinct limits, is not unique.
Therefore, these choices can have better or worse implications on the di�culty of actually tuning the system to all
limits. As a general rule of thumb, the more phases we need to control at the same time to switch regimes, the
less achievable this becomes in an experimental setting. However, after we have constructed any e↵ective model, the
key insights help us to then look at the full model and consider the behaviour for all modes at once. Thus, we just
eliminate mode 3 and 4 by Fourier-transforming the system, see Appendix E 2, and introduce

|�| := |J12| , �i[!] :=
1

i! + i/2
, �̄[!] := �3[!]�4[!] , d̄[!] :=

1

1 + �̄[!]|J43|2
,

�1[!] := �3[!]d̄[!]|J31J32| , �2[!] := �4[!]d̄[!]|J41J42| , µ1[!] := d̄[!]|J31J42J43| , µ2[!] := d̄[!]|J41J32J43| ,
(6.26)

where d̄[!] is a unit-less quantity acting as a scaling factor, and

�̄i[!] := 2�̄[!]d̄[!]|J3iJ4iJ43| ,
�̄i[!]

2
:=

i + 2�3[!]d̄[!]|J3i|2 + 2�4[!]d̄[!]|J4i|2

2
, (6.27)

are damping rates of the shared reservoir. With these definitions, the EOMs for the e↵ective model can be written in
a concise manner and read

i! ha1[!]i =

✓
�
�̄1[!]

2
+ i�̄1[!] cos ⌧1

◆
ha1[!]i

�

⇣
�1[!]e

�i(⌧1+⌧2) + �2[!]� i
�
µ1[!]�̄[!]e

�i⌧1 + µ2[!]�̄[!]e
�i⌧2 � |�|e

i⌧3
�⌘
ha2[!]i , (6.28)

i! ha2[!]i =

✓
�
�̄2[!]

2
+ i�̄2[!] cos ⌧2

◆
ha2[!]i

�

⇣
�1[!]e

i(⌧1+⌧2) + �2[!]� i
�
µ1[!]�̄[!]e

i⌧1 + µ2[!]�̄[!]e
i⌧2 � |�|e

�i⌧3
�⌘
ha1[!]i . (6.29)

Before analyzing these terms, we make a few notes about the Markovian regime. For the Markovian regime, we get
�i[! = 0] 2 R>0. Thus, parameters �1 ⌘ �1[0],�2 ⌘ �2[0], µi ⌘ µi[0], d̄ ⌘ d̄[0], �̄i ⌘ �̄i[0], �̄i ⌘ �̄i[0] 2 R>0, are all
positive real numbers. This gives us
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i! ha1[!]i =
⇣
�
�̄1

2
+ i�̄1 cos ⌧1

⌘
ha1[!]i �

⇣
|�1|e

�i(⌧1+⌧2) + |�2|� i
�
|µ1|�̄e

�i⌧1 + |µ2|�̄e
�i⌧2 � |�|e

i⌧3
�⌘
ha2[!]i ,

(6.30)

i! ha2[!]i =
⇣
�
�̄2

2
+ i�̄2 cos ⌧2

⌘
ha2[!]i �

⇣
|�1|e

i(⌧1+⌧2) + |�2|� i
�
|µ1|�̄e

i⌧1 + |µ2|�̄e
i⌧2 � |�|e

�i⌧3
�⌘
ha1[!]i , (6.31)

which are highly simplified EOMs for the e↵ective model. We will hereby call this e↵ective model the e↵ective
transistor. Immediately, one sees that the model can host unidirectional transport (similar to the three-mode model)
by choosing one of either conditions for the interaction parameters

case 1: |�1|e
�i(⌧1+⌧2) + |�2|

!
= +i

�
|µ1|�̄e

�i⌧1 + |µ2|�̄e
�i⌧2 � |�|e

i⌧3
�
, (6.32)

case 2: |�1|e
i(⌧1+⌧2) + |�2|

!
= +i

�
|µ1|�̄e

i⌧1 + |µ2|�̄e
i⌧2 � |�|e

�i⌧3
�
, (6.33)

which balances out di↵erent dynamics, just as before. However, as already discussed in the literature, see Ref.
[1, 14], nonreciprocal dynamics seem to always appear when coherent and dissipative interactions are balanced out.
Naturally, one question arises: “Can we observe the same behaviour when balancing out two dissipative (or coherent)
interactions?” Our e↵ective transistor model strains this rule a bit: Compared to the optical isolator from Metelmann
and Clerk [1], the balancing-out procedure here is a bit more nuanced: Instead of having a clear distinction between
coherent and dissipative dynamics, the interactions µi and �i of our e↵ective transistor depend on the susceptibilities
�̄[!]. First we note that |�| = |J12| has the same e↵ect as for the aforementioned J of the optical isolator, so it
definitely constitutes as the coherent part of this system. Secondly, we note that �i[!] has a similar structure to �[!]
of the optical isolator. Thus, �i[!] can surely be interpreted as the dissipative interaction for our e↵ective model. But,
making the case for µi[!] is not so straightforward. Even though this quantity depends on the shared reservoir and
the damping rates 3,4 due to d̄[!], it only indirectly does so, as the coherent interactions inside µi[!] are re-scaled by
a unit-less factor d̄[!]. In a way, it still acts like a coherent interaction, but energies are renormalized by the shared
reservoir. However, there undoubtedly is still a clear e↵ect of auxiliary modes on µi, so it could also be seen as an
e↵ective dissipative interaction. The concluding remark is then: This rule of always having to balance out coherent
with dissipative interactions may not be so strict, and could be a matter of definition. One consistent way would be
to simply call µi renormalized but still consider it as coherent, meaning the rule above still seems to hold.

Coming back to the transport behaviour, we set  ⌘ i/2, |Jij |/ = 1 (this choice will become clearer shortly), and
it follows, |�i|/ = |µi|/ = 1/2, which gives us two possibilities for (partially) decoupling mode 1 from 2, and vice
versa,

case 1: e
�i(⌧1+⌧2) + 1� i

�
e
�i⌧1 + e

�i⌧2 � 2ei⌧3
� !
= 0 , (6.34)

case 2: e
i(⌧1+⌧2) + 1� i

�
e
i⌧1 + e

i⌧2 � 2e�i⌧3
� !
= 0 . (6.35)

At first this system seems inhibit the same dynamics as before, where we choose one of either case and in-turn enforce
nonreciprocity. However, since we now have a bigger parameter-space in this model, we can find an additional limit,
where both cases above are true at the same time. Note, that this limit can be achieved for finite (and thus non-trivial)
interaction parameters. Here, the system acts like a dark state, see Ref. [69], where both modes fully decouple from
each other in both directions and any transport fully vanishes. For example, consider ⌧1 = ⌧2 = �⌧3 = ⇡/2, which
implies

case 1: e
�i(⇡/2+⇡/2) + 1� i

⇣
e
�i⇡/2 + e

�i⇡/2
� 2ei(�⇡/2)

⌘
= �1 + 1� i (�i� i+ 2i) = 0 , (6.36)

case 2: e
i(⇡/2+⇡/2) + 1� i

⇣
e
i⇡/2 + e

i⇡/2
� 2e�i(�⇡/2)

⌘
= �1 + 1� i (i+ i� 2i) = 0 . (6.37)

Therefore, both cases hold and we see full cancellation in both directions at the same time! This limit will be generally
denoted as the o↵ -regime between given mode-pairs (since there are several possible limiting regions for di↵erent pairs,
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Class Transport ⌧1 ⌧2 ⌧3

R 1$ 2 0 0 0
NR 1! 2 ⇡/2 0 0
NR 1 2 �⇡/2 0 0
R 1$ 2 ⇡/2 ⇡/2 ⇡/2
NR 1! 2 ⇡/2 �⇡/2 ⇡/2
NR 1 2 ⇡/2 �⇡/2 �⇡/2

o↵ 1 = 2 ⇡/2 ⇡/2 �⇡/2
o↵ 1 = 2 �⇡/2 �⇡/2 ⇡/2

TABLE II. Interesting limit cases of the directional transistor with  ⌘
i/2, |Jij |/ = 1, for di↵erent values of the Aharonov-Bohm phases ⌧i.
Here, “R” denotes reciprocal and “NR” unidirectional transport. The class
”o↵ ” represents the regime where no transport between mode a1 and a2

is possible. Note, that this situation is di↵erent for each possible pairs of
modes ai and aj . Also note, that ”Class” is loosely defined here, as it
only holds on the level of (partially) decoupling a pair of modes in each
possible e↵ective model (we could elminate di↵erent modes) and does not
mean regimes in the same class are the same. In fact, the classes of the 2nd
and 3th row are distinctively di↵erent from the 5th and 6th row. We will
touch on that briefly in the coming Section.

more on that later). Lets focus on the e↵ective damping rates for a second: Apart from the term ��̄i[!]/2, which
acts the same way as the global reservoir of the optical isolator, we also have an additional term i�̄i[!] cos ⌧i, which
acts as a detuning and encodes additional oscillations of the respective mode of interest. Thus, even if we only look at
damping rates for each mode and consider the steady state, there would still be some dynamical activity happening,
so instead of just observing an exponential decay, we would observe additional oscillations till the mode in the steady
state relaxes to the lowest possible energy. By looking closer at our definition of �̄i, oscillations happen because
excitations can now traverse along a closed loop and end up at the mode they started at, i.e. for �̄1 / |J31J41J43|, an
excitation can travel as such: 1 ! 4 ! 3 ! 1. However, this is highly dependent on the phase ⌧1, where the cosine
vanishes for non-trivial values, namely ⌧1 = ±⇡/2. Thus, these oscillations become maximal for trivial values of the
phases, ⌧1,triv = 0,±⇡ =) cos(⌧1,triv) = 1.

Now we come back to the limit cases of the system regarding transport. Note, that there are several of these
reciprocal (R)/unidirectional (NR)/o↵ limits, which are highly dependent on the pair of modes considered, see Table
VIB. How does that happen? To understand this, we look at the scattering probabilities after finding an appropriate
impedance-matching condition.

1. Scattering and noise of the directional transistor

Here, we will focus again on the full, four-mode model. To impedance match the system, we need to ensure that the
diagonal probabilities of the S-matrix all vanish. Similar to above (see Eq. (4.36)), the model is impedance-matched
if for some , with 3,4 / , we get 2�̄[0] = 1. This implies


2
�̄[0]

!
= 1() 34

!
= 42 , (6.38)

Again, there are several options for the rates i, which could be used for this condition to hold. Here, we will focus
on the most symmetric choice, which was already used above, namely  ⌘ i/2, where all four damping rates have
the same value. As before, interaction parameters can then be expressed in units of , with |Jij |/ = 1. To show the
e↵ect of the phases on the transport, we will focus only on a specific number of limiting regimes in the Markovian
approximation.

Consider Fig. 28, where we have shown di↵erent regimes for the Markovian S-matrix with ! = 0. The first case, see
Fig. 28 (a) with ⌧1 = �⌧2 = ⌧3 = ⇡/2, shows one possible NR limit, where there are no reflection coe�cients (due to
impedance matching) and the only transport allowed is from 1! 2! 4! 3! 1. In this regime, we see how mode 2
and 3 fully decouple, so the NR transport in 1 and 2 happens at the same time as the o↵ -limit for modes 2 and 3. This
is an important feature of this model, as vanishing transport between a pair of modes coincides with NR transport
between others. From the perspective of the e↵ective transistor (the upper left 2 ⇥ 2 block of the S-matrix), where
mode a3 and a4 are eliminated, it behaves like the optical isolator with � = �R. The opposite transport is seen in the
third Fig. 28 (c) with ⌧1 = �⌧2 = �⌧3 = ⇡/2, which tells us that the 4-mode model e↵ectively reproduces the optical
isolator for these limiting cases. However, this changes in Fig. 28 (b) with ⌧1 = ⌧2 = �⌧3 = ⇡/2, which one of several
possible o↵ -regimes of the e↵ective transistor for modes 1 and 2. Here, neither reflection nor transmission happens
in the upper left 2⇥ 2 sub-block. E↵ectively speaking, any information entering port 1 or 2 completely vanishes, as
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their is destructive interference in both directions of propagation. In the e↵ective picture, this limit behaves singular
and information seems to get destroyed. Of course, in the full model this is not what is happening, and as mentioned
in (a), if one interaction between a pair vanishes in this limit, another does also vanish - here mode 3 and 4 also
fully decouple. There is unidirectional transport in a circle as 1 ! 4 ! 2 ! 3 ! 1. In the last Fig. 28 (d) with
⌧1 = �⌧2 = ⌧3/2 = ⇡/2, one of several reciprocal regimes are shown, where the upper left sub-block behaves like the
reciprocal optical isolator with � = �0. However, there is perfect transmission from mode 4 to mode 3, but not from
any other mode. Nonetheless, mode 1 couples to mode 2 in a reciprocal manner and there is some transport from 1
(2) to 4 and also from 3 to 1 (2). This limit is an intermediate limit where changing ⌧3 would lead to one of the NR
regimes (a) and (c).

(a) (b) (c) (d)

FIG. 28. Scattering probabilities of the directional transistor for the impedance-matched case i/2 ⌘ 2, |Jij |/ = 1, and
di↵erent values of the Aharonov-Bohm phases ⌧i. (a) NR limit for ⌧1 = �⌧2 = ⌧3 = ⇡/2, with transport from 1 ! 2 ! 4 ! 3 !
1 in the full model. In the e↵ective model we have unidirectional transport from 1 ! 2. (b) o↵ -limit for ⌧1 = ⌧2 = �⌧3 = ⇡/2,
with no transport between 1 $ 2 and vanishing reflection in the e↵ective picture. In the full model there is unidirectional
transport from 1 ! 4 ! 2 ! 3 ! 1 (c) NR limit for ⌧1 = �⌧2 = �⌧3 = ⇡/2, with unidirectional transport from 2 ! 1 in the
e↵ective picture, with unidirectional transport from 1 ! 4 ! 3 ! 2 ! 1 for the full model. (d) R limit for ⌧1 = �⌧2 = ⌧3/2 =
⇡/2, with reciprocal transport between 1 ! 2 in the e↵ective picture.

After understanding Fig. 28, we are equipped to look at specific scattering and output-noise elements. For this,
we will fix one of the three phases, in our case ⌧1 = ⇡/2, and tune other phases to see when transport occurs. We
investigate the resonant case for ! = 0 in the Markovian regime for simplicity (which is justified, as the Markovian
coincides with the non-Markovian regime for ! = 0). For this, consider Fig. 29, where we compare di↵erent ports for
! = 0,  ⌘ i/2, a fixed phase ⌧1 = ⇡/2, and plot it against ⌧2,3. In Fig. 29 (a), the transmission from 2! 1 (left) and
1! 2 (right) are shown. As we can see, there are distinct regions for limiting transport regimes, consider Table VIB.
To understand the limit cases, we need to always look at the left and right plot at the same time: NR transport with
full cancellation from 2 ! 1 happens at ⌧1 = �⌧2 = �⌧3 = ⇡/2, where the probability becomes maximal (minimal)
in the left (right) picture. The reciprocal region is at ⌧2 = ⌧3 = ⇡/2, where transmissions in both directions are the
same. However, we see clear dark regions in both pictures (the diagonal region in the left plot from (⌧2, ⌧3) = (0, 2⇡)
to (⌧2, ⌧3) = (2⇡, 0), and the horizontal region for ⌧3 = �⇡/2 on the right). If both dark regions meet on both sides,
the transport in both directions vanishes fully. This o↵ -limit happens with full cancellation at ⌧2 = �⌧3 = ⇡/2,
resembling the theoretical result from earlier. We can tune the system to di↵erent limits by simply tuning the phases
and leaving other parameters invariant. However, by only changing a single phase we cannot turn the transistor o↵
between nonreciprocal regions, since the o↵-region on the left is on a diagonal region. To do that, we would need to
change both phases at the same time. This can be experimentally challenging, thus we consider ports 2 and 4 in Fig.
29 (b), showing transmission from 4! 2 (left) and 2! 4 (right). We see how the limiting regions are now displaced
compared to before. Interestingly, the NR regions are now on di↵erent corners to before, and both o↵ -regions are not
diagonally placed. Here, the NR regions are ⌧2 = �⌧3 = ⇡/2 (the o↵ -region of (a), and ⌧3 = �⌧2 = ⇡/2 (the same
NR region as in (a)). The reciprocal region sits between the NR regions at ⌧2 = ⌧3 = ⇡/2. If we sit at one of the
NR regions, we can change to the reciprocal region by simply tuning one of the phases. Since the o↵ -regions are now
on non-diagonal lines and intersect at ⌧2 = ⌧3 = ⇡/2, the transistor can be turned o↵ between the NR regions then
change the direction of the “source” and “drain” of this transistor. This flips the bias. The “gate” always has to be
controlled by two phases, to achieve all limits. In Fig. 29 (c) diagonal elements of the noise for output 1 and 2 and a
noise-input vector nth = (10, 10, 0, 0) are shown. We see – as expected from the scattering (a), that the transport is
unidirectional at NR regions and reaches its o↵ -limit at ⌧2 = �⌧3 = ⇡/2. In Fig. 29 (d), we have shown the diagonal
output-noise elements for output 2 and 4 and an input of nth = (0, 10, 0, 10). We see, that there is no thermal-noise at
the output of either port in the o↵ -limit, and there are no back-reflections and the system behaves like a dark state.
Thus, this is a highly versatile system which can be looked at from varying angles and ports can be chosen to meet
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(a) (b)

(c) (d)

(e) (f)

FIG. 29. Comparison between scattering probabilities and fluctuations at outputs for ! = 0,  ⌘ i/2, a fixed phase ⌧1 = ⇡/2,
plotted against ⌧2,3, with varying input-noise. (a) The transmissions from 2 ! 1 (left) and 1 ! 2 (right). There are distinct
regions for limiting transport regimes. To understand the limits, we need to consider the left and right plot at the same time.
If dark regions meet on both sides, the transport in both directions vanishes fully. The system reaches di↵erent limits if we
simply tune the phases and leave all other parameters invariant. (b) The same as before, only for ports 2 and 4. We see
how these regions are now displaced. Since the o↵-regions are now non-diagonal lines and intersect at ⌧2 = ⌧3 = ⇡/2, we can
turn the transistor o↵ between NR regions and change the “source/drain” direction of the transistor. The “gate” is always
controlled by two phases, but now it is su�cient to only tune a single phase at a time to change regions. (c) and (e) Diagonal
elements of the output-noise and a noise-input vector n = (10, 10, 0, 0). For (c), transport is unidirectional at NR regions and
reaches its o↵ -limit at ⌧2 = �⌧3 = ⇡/2 on both sides for outputs 1 and 2. (d) and (f) Diagonal output-noise with an input of
nth = (0, 10, 0, 10).

certain demands of the system. We see in Fig. 29 (e) (and Fig. 29 (f)) that the noise missing at the o↵-regions for
output 1 (2) and 2 (4) can be found at output 3 (1) and 4 (3). Comparing the left (c) and (e) and the right column
(d) and (f), we notice that the left can be transformed to the right by mirroring all heatmaps at the y = x axis with
an angle of ⇡. Thus, this model is predictable and can be further analyzed. To conclude this Section, we make a
comment about ! 6= 0: As expected, the system analogously behaves to the three-mode system, as the transport is
highly dependent on the resonance. Additional details can be found in the App. E 2 c, and App. E 2 d.
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VII. Discussion

In this thesis, we reviewed various appearances and aspects of nonreciprocity in several few-mode bosonic systems.
In particular, we focused on transport limits and their relation to gauge-invariant phases, as well as the influence of
(non)reciprocity on thermal noise. Additionally, we examined how these e↵ects might di↵er between mode operators
and quadratures. The underlying system we considered consists of a three-resonator design with dissipative and
coherent couplings, arranged in an Aharonov-Bohm ring configuration. Each resonator is locally coupled to a thermal
reservoir, and pairs of resonators interact through either linear (beam-splitter) or parametric (two-mode squeezing)
interactions. Since this is an open bilinear system, it was modeled using the input-output formalism and the quantum
Langevin equation (see Sec. II E and Sec. III B). By extending the bosonic Bogoliubov-de-Gennes (BdG) formalism
to open systems (see Sec. III B 3), we were able to concisely describe system-environment interactions, including the
scattering behaviour and the system’s influence on thermal noise. The BdG formalism resulted in equations of motion
for the resonators with the dynamical matrix D (A), encoding the complete dynamics of the open (closed) system.
Since the arrangement of the three-mode system leads to the emergence of gauge-invariant phases (� for linear, and
#1,2 for parametric interactions), we devised a method to isolate all relevant phases and express our dynamical matrices
in terms of these phases (see Sec. III B 2). By assuming that one resonator is highly damped, it becomes quasi-static
compared to the rest of the system and e↵ectively acts as a shared dissipative reservoir, reproducing the e↵ective
two-mode model of Metelmann and Clerk [1]. We showed that the auxiliary can be eliminated from the equations
of motion in two ways: either by assuming that the auxiliary reaches a steady state and adiabatically eliminating
it, or by transforming the equations of motion to the frequency domain and solving for the auxiliary. The former
elimination yields the Markovian limit, while the latter results in the non-Markovian regime of the shared reservoir, as
the frequency response of the auxiliary remains intact. To understand the di↵erence between the Markovian and non-
Markovian regimes, we drew an analogy comparing the dissipative coupling to a complex refractive index, where the
non-Markovian case converges to the Markovian limit if the dissipation rate of the auxiliary is increased. By balancing
coherent and dissipative interactions in the e↵ective model, we identified conditions under which the gauge-invariant
phases enforce nonreciprocal transport by (partially) decoupling one mode from another. To analyze the influence
of nonreciprocity on transport and thermal noise, we compared several few-mode bosonic systems. The majority of
the thesis focused on linearly coupled models, neglecting any parametric interactions. Specifically, we considered the
e↵ective two-mode optical isolator as proposed by Ref. [1], the general dissipative three-mode ring, and our four-mode
extension, the dissipative directional transistor. Since the optical isolator is just an e↵ective model of the dissipative
ring, we first focus only on those two. We considered two extreme transport limits for both models, the reciprocal
limits for � = {0,⇡} and the unidirectional limits for � = ±⇡/2 (see Sec. III F).

Consider the optical isolator, where we examined the complex spectrum of the dynamical matrixDe↵ (see Sec. IIIG 2).
Imaginary parts of the spectrum represent the energies of the Hamiltonian, where we observed degenerate zero-energy
eigenstates for unidirectional limits. By moving away from that limit, eigenstates begin to split up with finite energies
with opposite signs, and reach their maximum at reciprocal limits. The real parts of the complex spectrum encode
dissipation and remain finite for all values of �, but equalize for unidirectional limits. In this limit, eigenstates coalesce,
implying that the non-Hermitian system reaches an exceptional point, see Refs. [59–62]. In Sec. IVA we derived a
general expression for the S-matrix using I/O theory, and showed that modes and adjoints are treated di↵erently by
the S-matrix with respect to !, where adjoints get scattered by a S-matrix with negative frequencies. This changes for
quadratures, as the frequency dependence of the S-matrix does not depend on the quadratures. We could show that
this is a feature of non-Hermitian operators and is thus only relevant for mode operators. Additionally, we suspect
that this could also be explained with properties of complex Fourier transforms versus real Fourier transforms. We
could reproduce the non-unitary S-matrix for the optical isolator in the unidirectional limit known from Metelmann
and Clerk [1] (see. Sec. IVC), which resembles an idealized isolator for maximized power transfer due to impedance-
matching. Additionally, we also considered the reciprocal limit, which was not shown in Ref. [1], where scattering
probabilities for modes become asymmetric and tilt to a preferred direction in frequency (with opposite tilts for
adjoints). However, this result is already known from Ref. [63] for a similar optomechanical setup, where scattering
probabilities re-symmetrize by reaching exceptional points. Why this tilt appears for reciprocal points will become
clear when we discuss the three-mode model. In the non-Markovian regime, scattering probabilities are symmetric in
general but not centered at the origin, where the Markovian limit shows a more noticeable tilt with an asymmetric
curve. Thus, the auxiliary has a big influence on the transport. To see this, we noticed that transport in the
non-Markovian regime strongly di↵ers from the Markovian limit if the system was impedance-matched with equal
dissipation rates  ⌘ 1,2,3/2, but if the auxiliary damping increases compared to other rates, i.e.  ⌘ 1,2 = 43, the
non-Markovian regime converges to the Markovian limit. This behavior is analogous to our earlier discussion of the
complex refractive index, reinforcing the consistency of our findings across di↵erent aspects of the system. Noticeably,
scattering probabilities between quadratures always yield symmetric curves in all transport limits, as shown in App.
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C 5. In Sec. V, we derived the noise-spectral density S̃out[!] for output-ports. This derivation involved expressing
covariances of output fields in terms of input fields. Our derivation revealed that a combination of S-matrix elements
act as a transfer function, e↵ectively filtering and redistributing incident noise to respective output ports. In our
analysis we assumed white noise entering the input-ports. This incident noise, after traversing the optical isolator,
leaves the system with a finite support over a narrow frequency bandwidth, as detailed in Sec. VB and Sec. VC.
The behavior is analogous to a band-pass filter, which eliminates high and low frequency components of an input
signal. We compared the output-noise of the optical isolator for di↵erent transport limits and could show that noise
incident at port i is fully transferred to port j in the unidirectional limit S

a
†
jaj

[0] = n̄i, as expected by the S-matrix

(for the only non-zero element |S̃ji|
2 = 1). If both ports have the same thermal input (n̄1 = n̄2 > 0), the system in the

unidirectional limit does not become unresponsive and still fully transfers the noise in one direction (i.e. 1! 2), where
noise incident to port 2 cannot be found at any output (since it will enter the auxiliary and leave output 3, which
this model does not account for). In the reciprocal limit, noise entering port i can be found at both outputs, which
starts to saturate for ! = 0, and where more fluctuations exist at output j. Noticeably, the output-noise of the optical
isolator can drop below the noise-floor, since eliminating the auxiliary also eliminates any inputs of the auxiliary to
remaining modes. Correlations S

a
†
iaj

between outputs can appear for finite frequencies, since noise at the output

is superposed. These reach their maximal value for !/ = ±
p
2 in the non-Markovian regime. Anti-correlations

S
a
†
iaj

< 0 starts to appear if it is unclear at which output the information is to be expected, i.e. the reciprocal limit

i $ j, with n̄i � n̄j = 0. Outputs are positively correlated S
a
†
iaj

> 0 if noise exists either at both outputs at the

same time or none at all, i.e. the unidirectional limit 2! 1 with n̄1 � n̄2 = 0. Also, outside the unidirectional limits,
cross-correlations can become complex.

Next, we discuss how the behaviour of three-mode ring di↵ers compared to the e↵ective optical isolator. The Hamilto-
nian of the dissipative ring was diagonalized with quasi-momenta eigenstates, where two of them are always degenerate
in reciprocal limits, and maximally nondegenerate in unidirectional limits, see Sec. IIIG 1. We could show in Sec.
VIA 1 that the three-mode model acts like a circulator with an unitary S-matrix for unidirectional limits, e.g. for
� = ⇡/2 and ! = 0, reflections vanish and only the transmissions |S̃a2a1 |

2 = |S̃a3a2 |
2 = |S̃a1a3 |

2 = 1 remain. In the
reciprocal limit, transmissions have equal probability and reflections do not vanish. As before, scattering probabilities
are tilted for the reciprocal limit in the mode basis. Additionally, we could relate the imaginary part of the eigenvalues
of D to the peaks and dips of scattering probabilities (which also holds true for the optical isolator). The real part
of the eigenvalues correspond to dissipation and leads to an overlap of quasi-momenta eigenstates, explaining why
scattering is not centered at ! = 0 for the reciprocal limit, as two eigenstates always become degenerate. The output-
noise of the three-mode ring, which behaves similarly to the optical isolator. However, the noise at outputs never
drops below the noise floor, since all inputs/outputs are considered in this model. Di↵erent to the optical isolator, the
system becomes unresponsive for equal inputs n̄1 = n̄2 = n̄3 > 0, since all outputs show white noise for all values of
� for all frequencies. Next, we showed that relating correlations in the mode basis to correlations in the quadrature
basis S

aia
†
j
= Sxixj � iSxipj can become quite useful when the latter is expressed using S-matrix amplitudes in the

mode basis. Using that, we found that the imaginary part of correlations only appear for the reciprocal limit since
modes and adjoints are scattered di↵erently with respect to !. If scattering between modes behaves the same as
between adjoints in !, imaginary parts of correlations vanish, which is exactly the case in unidirectional limits. Thus,
the imaginary component of cross-correlations and the asymmetry in scattering amplitudes serve as key indicators for
determining the transport regime of the system.

Section VIB finishes this thesis with the last model we analyzed. For this, the three-mode ring was extended by an
additional fourth dissipative resonator, coupling linearly to all other resonators. We could show that this arrangement
results in three distinct gauge-invariant phases, which can be independently tuned to achieve multiple transport limits.
This system not only reproduces known transport limits of the three-mode ring, but also o↵ers novel transport regimes,
which, if the phases are tuned accordingly, lead to a full cancellation of transport between a given pair of modes.
This cancellation is most importantly non-trivial, as no interactions between the mode-pair are neglected from the
beginning. On the contrary, they destructively interfere in both directions at the same time, where transport simply
gets redirected to the other two modes. We have shown that this new o↵-limit can be understood as the o↵-state of
a transistor (by considering a e↵ective two-mode transistor). However, di↵erent to conventional transistors, the gate
(our phases) does not only work as an on/o↵ switch, but also controls the bias of the transistor in the on-state, as
transport can still be tuned to be unidirectional or reciprocal. So this is not only an extension of the isolator design,
but also an extension of a conventional transistor. Since signals just get redirected to other modes in the o↵-limit,
considering the full four-mode model o↵ers a very versatile configuration for controlling light flow.
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VIII. Conclusion and further outlook

This thesis shows how expressing everything in terms of gauge-invariant phases can become quite useful for comparing
full descriptions to e↵ective models. Also, we showed how di↵erent regimes of the auxiliary reservoir influences
transport and filtering properties of the system. Moreover, looking at modes and quadratures at the same time
became a flexible tool for a greater insight into the constituents of the S-matrix and the output-noise, and helped us
to find a clear distinction between reciprocal and unidirectional limits. Additionally, we showed how the dynamics of
the auxiliary strongly influences transmissions, where a resonator with a bad quality factor (and strong dissipation)
narrows down transmissions, moving the response closer to the resonant value. Furthermore, we hope this thesis
emphasis on phases, transmissions and the output-noise provides a toolkit for constructing new, more versatile, yet
minimal control systems. Especially the directional transistor we introduced, shows how a simple linearly coupled
system yields novel regimes for the flow of light. The advantage of minimal systems is clear: Since the experimental
realization of models is generally a challenging task, small few-boson systems are less prone to unwanted noise, and can
be realized in a wide range of di↵erent platforms, such as photonic and optomechanical systems, or superconducting
circuits. Thus, control systems which are easy to manufacture can become widely used components for complex
control networks. For example, consider an application for controllable (unidirectional) transmission in quantum
communication, more sophisticated fiber-optical distribution networks (remember that two circulators can be used to
multiplex bidirectional transmission from two ports to a single optical-fiber [70]), or such systems could be used for
high-fidelity state transfer in quantum computers.

This thesis o↵ers many possible avenues to explore for future research. From a theorists perspective, an interesting
next step is considering the signal to noise (S/N) ratio at output-ports. As the noise for a impedance-matched system
in the unidirectional limit is quantum-limited, knowing the exact influence of signals on fluctuations could illuminate
new ways of protecting signal-amplitudes while still maintaining a low amount of noise. Even though we considered
parametric interactions in the beginning, most of this thesis focused only on linear interactions. As nonreciprocal
systems with parametric interactions directionally amplify signals, see Ref. [1, 64, 71], understanding the exact impact
of an amplification on the noise o↵ers multiple promising applications, which is also true for other nonlinear e↵ects.
For example, by finding the S/N ratio, one could devise a way to find quantum-limited photonic analogs to low-noise
amplifiers like silicon FET amplifiers. These components are frequently used in integrated solid state circuits and
amplify low-power signals without considerably worsening its S/N ratio, see Ref. [72]. Since the optical isolator
and the dissipative ring both work as narrow band-pass filters, another compelling direction is to directly engineer
systems with a specific attenuation profile to filter out unwanted frequencies. Since the output-noise is dependent on
a combination of S-matrix elements, finding a way to directly design S-matrix amplitudes themselves could o↵er a way
to build filters with di↵erent profiles. Recall that the number of dips/peaks of scattering amplitudes depends on the
number of eigenstates, so simply increasing the amount of modes (i.e. a nonreciprocal circulator with more than three
modes) widens the frequency bandwidth of the filter, especially if dissipation rates are high. However, damping rates
cannot be too high, as impedance-matching maximizes power-transfer, so there is an interplay between the signal-
amplitude (maximized if impedance-matched) and the size of the passband of the filter (which can be increased by the
number of modes). Additionally, when several two-port systems are connected in a lattice configuration, the S/N ratio
could serve as an order parameter for topological phase transitions, by connecting the noise properties to topological
invariants. In thermodynamics, a promising direction could be the investigation of thermodynamic uncertainty relation
(TUR) violations. Especially defining quadrature currents and finding appropriate TURs remains an area that has
not been explored yet.
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APPENDIX

A. THEORETICAL BACKGROUND

To calculate the equations of motion of a dissipative system we need the toolbox of open quantum systems, usually
via the Lindblad master equation

d

dt
⇢̂ = L⇢̂ ⌘ �i[Ĥsys, ⇢̂]| {z }

von Neumann eq.

+
X

j

j [1� n̄j(!j)]D[âj ]⇢̂+ j n̄j(!j)D[â†
j
]⇢̂

| {z }
local dissipation

, (A1)

for quantum systems coupled to Markovian reservoirs with strength j , where L is the Liouvillian superoperator,
acting on an abstract operator-space and transforming our system operator ⇢̂ via an universal dynamical map to a
new system state ⇢̂0 at a di↵erent time. The first term of the equation above is the (Hermitian) von Neumann equation
and describes the coherent, energy-conserving dynamics, whereas the second and third term are the non-Hermitian
part of the dynamics and encode the dissipation of particles/energy from the system to its environment and vice
versa. Here, n̄j(!j) is the Bose-Einstein occupation of a reservoir with temperature Tj , chemical potential µj , and !j

is the respective energy of a particle leaving/entering. The dissipation is described by the dissipation superoperator

D[�̂]⇢̂ = �̂⇢̂�̂
†
�

1

2
{�̂

†
�̂, ⇢̂} , (A2)

where �̂ is a system jump operator and

{Â, B̂} = ÂB̂ + B̂Â , (A3)

is the anticommutator for any general operators Â, B̂. At this point we will set the occupation-factor n̄j(!j) = 0,
only allowing for dissipation leaving our system. More precisely, the remaining dissipator in Eq. (A1) now describes
how each cavity j is being coupled to a local Markovian reservoir with coupling strength j and jump operator âj . In
general, one could also include the third term of Eq. (A1), where the system gains energy/particles from the reservoir,
but this is dismissed since we will mitigate for this later using the formalism of input-output theory. To calculate the
dynamics of the cavity mode expectation value of a respective cavity âs, one could transform the Lindblad master
equation into the Heisenberg picture. A way to do this is by using the adjoint Liouvillian, defined as

L
†
âs ⌘ +i[Ĥsys, âs] +

X

j

jD
†[âj ]âs , with D

†[�̂]âs = �̂
†
âs�̂ �

1

2
{�̂

†
�̂, âs} , (A4)

where D
†[�̂]âs is the adjoint dissipator. Then, one can express the time dynamics of the operator expectation value

with the Heisenberg equation of motion and simply calculate

d

dt
hâsi = Tr

⇢
âs

d

dt
⇢̂

�
= Tr {âs (L⇢̂)} = Tr

��
L
†
âs

�
⇢̂
 
= hL†

âsi . (A5)

This will give us the equations of motion for the cavity expectation values.
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B. SYSTEM AND MODEL

1. Isolating the gauge-invariant phases

Since some phases are just the complex conjugates of others, it is su�cient to only consider six terms

1. ↵12 + �2 � �1 ,

2. ↵31 + �1 � �3 ,

3. ↵32 + �2 � �3 ,

4. �12 � �2 � �1 ,

5. �31 � �1 � �3 ,

6. �32 � �2 � �3 ,

(B1)

for the gauge transformation. To find a useful transformation which rewrites eqs. (3.30) in terms of the before
mentioned Aharonov-Bohm phases, we can safely set three of the terms above to zero, since the only relevant phases
are �, #1 and #2. This choice is not unique but we hereby choose to set the terms 2., 3. and 6. to zero, which gives
us a closed set of equations with

2. ↵31 + �1 � �3
!
= 0 =) �1 = �3 � ↵31 , (B2)

3. ↵32 + �2 � �3
!
= 0 =) �2 = �3 � ↵32 , (B3)

6. �32 � �2 � �3
!
= 0 =) �3 = ��2 + �32 , (B4)

with the following solutions

2. �1 =
�32 + ↵32

2
� ↵31 , 3. �2 =

�32 � ↵32

2
, 6. �3 =

�32 + ↵32

2
. (B5)

Using these solutions, the remaining terms simply become

1. ↵12 + �2 � �1 = ↵12 + ↵31 � ↵32 = � ,

4. �12 � �2 � �1 = �12 + ↵31 � �32 = �#2 ,

5. �31 � �1 � �3 = �31 + ↵31 � �32 � ↵32 + (�12 � �12)

= �12 + ↵31 � �32 � �12 + �31 � ↵32

= �(#1 + #2) .

(B6)

Note, that if we wand to reorder these phases, we can just perform a gauge-transformation of the type

haji ! ha
0
j
i = e

i�j haji , (B7)

where �j is any of the non-trivial Aharonov-Bohm phases considered. This has a neat implication: Suppose, we have
a more complicated model and want to remove a certain interaction. Also suppose that the interaction is needed to
have a non-trivial loop. If the interaction is now lacking, it would imply that some #j vanishes, but maybe this is
not seen easily in the equations of motion. By performing the transformation above, the phase �j can be placed in a
way where it will only appear at that interaction site - and by removing the interaction, one will faithfully lose the
gauge-invariant phase.

2. Counting the number of interactions for a general bilinear system

Here, the number of interactions for a general bilinear system with N – modes is determined. This should give us
a preliminary hint at the exact number of non-trivial phases for a general system. Each mode can couple to N � 1
other modes via BS interactions (excluding that a mode couples to itself). Nonetheless, since exactly N � 1 couplings
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would be counted twice, this number needs to be divided by two. For N resonators, the number of BS interactions is
exactly

# BS int. for N modes = N(N � 1)/2 .

If we also include adjoint modes, this number becomes twice as large and coincides with the number of two-mode
squeezing interactions. It simply reads

# BS int. for N modes (and adjoints) = # TMS int. for N modes = N(N � 1) ,

which gives us the total number of all interactions of a bilinear system with N (and N adjoint) modes

# Total int. = 2N(N � 1) .

However, exactly finding the number of non-trivial phases is still not straightforward and can be seen as a challenging
task for the future.

3. Understanding the outer-product of non-Hermitian vectors

Before we can write Eq. (3.28) as a system of di↵erential equations which encode the coherent and dissipative
dynamics of the complete system, we need to find the commutator [a,a†] first. However, the definition of a† introduces
an important nuance when calculating the product of two vectors: If we consider the product aa

†, the result is a
matrix due to the way the outer-product acts, but if we consider a

†
a from a naive standpoint, this would give us a

scalar. The commutator would then be ill-defined and we need to find an adequate way to perform the outer-product.
Thus, we need to make a few remarks: Take for an example two vectors v1,v2, with hermitian-operators defined as
vi = (x̂i, p̂i)T , then the commutator can be calculated as

[v1,v2] = v1v
T

2 � (v2v
T

1 )
T
. (B8)

This gives us a matrix with the correct elements, which can be checked easily and is a known result for hermitian
operators (see Ref. [67]). Luckily, the same logic can be applied to devise a way for dealing with non-Hermitian
operators.
Consider a simple vector with only two elements a = (â, â†)T for now, where the di↵erence to the case above is clear:
Acting with a dagger on the outside of a vector transposes the vector and daggers the elements

a
† =

✓
â

â
†

◆�†
⌘

✓
(â)†

(â†)†

◆�T
= (â†, â) , (B9)

but we need to find an action which gives us a column vector of conjugate transposed elements (or more precisely
just permutes the elements with their adjoint counterparts), but does not transpose the vector itself, such that we
can find a way to define the outer-product of a†a. For this, we introduce a slight nuance for algebraic precision: The
action of considering the daggered elements inside a vector will be denoted by a new symbol ‡, which permutes the
elements inside the vector. Some authors use the ⇤ symbol at the level of elements instead of the usual †, nonetheless,
we will use basically do the opposite and keep the † for the adjoint elements inside the vector, but use ‡ for the
non-transposed adjoint vector itself. Consider

a
‡ =

✓
â
†

â

◆
, (B10)

which is nothing more than the action of permuting the elements inside the vector by multiplying the extended Pauli
matrix ⇤x = �x ⌦ 11N to it (where the number of modes is N = 1 for this simple case), namely
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a
‡
⌘ ⇤xa =

✓
â
†

â

◆
. (B11)

Note, that ⇤x is orthogonal with ⇤
T

x
= ⇤

�1
x

= ⇤x. All this translates to

a
† = (a‡)T = (⇤xa)

T = a
T
⇤x , (B12)

or alternatively

a
‡ = (a†)T , (B13)

where the outer-product aa† is still defined as the expected action

aa
† = a(a‡)T =

✓
â

â
†

◆
⇤x

✓
â

â
†

◆�T
=

✓
â

â
†

◆
(â†, â) , (B14)

of a vector multiplied to a transposed vector from the left side - resulting in a matrix. However, if the daggered vector
is on the left side of the multiplication, we can use the newly defined symbol and define the outer-product in a similar
way to the hermitian example above

a
†
a = (a‡ aT )T , (B15)

which again gives us the desired, properly defined product of vectors resulting in a matrix, as ‡ only acts at the level
of elements and permutes them. This implies

a
†
a = (a‡aT )T = ([⇤xa]a

T )T = ([⇤x] [aa
T ])T = (aaT )T⇤x , (B16)

where we used (AB)T = B
T
A

T (for any matrices A,B), and ⇤
T

x
= ⇤x for the last equality. We need to make an

additional remark here: The way we applied the usual matrix-transpose only acts on the level of matrices, whereas the
transpose inside the outer-product (acting on the level of vectors) does not. To ensure consistent algebra, applying
the transpose of the last equality to the inside of the outer-product would give us a wrong equality, thus we need to
be careful with it. To mitigate for that, we will only act with the transpose on matrices (or products of matrices and
vectors, but never on vector-vector outer-products), where it acts in the usual manner. All this implies that

(aaT )T⇤x 6= aa
T
⇤x , (B17)

does not hold. This concludes our remarks.

4. Generalizing the transformation matrix

For N = 1, we have v = (x, p)T and a = (a, a†)T , implying

v = T1 a , with T1 =
1
p
2

✓
1 1
�i i

◆
. (B18)

For N = 2, we have v = (x1, p1, x2, p2)T and a = (a1, a2, a
†
1, a

†
2)

T , implying
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v = T2 a , with TN=2 =
1
p
2

0

B@

1 0 1 0
�i 0 i 0
0 1 0 0
0 �i 0 i

1

CA . (B19)

We would like to find a way to write this for a general case. However, simply multiplying

T1 ⌦ 11N=2 =
1
p
2

0

B@

1 0 1 0
0 1 0 1
�i 0 i 0
0 �i 0 i

1

CA , (B20)

does not give us us the right expression (similarly for 11N=2 ⌦T1), there is still a permutation needed

PC =

0

B@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CA . (B21)

Applying this will give us the correct expression

T2 = PC(T1 ⌦ 112) . (B22)

However, this is only the formula for N = 2, can we find an expression for PC for greater N in a formal way? Yes,
for a l⇥ k matrix, the permutation leaves corner elements invariant (1, 1) = (l, k) = 1, and permutes just the insides.
This can be achieved with a so-called commutation matrix, defined as

PC
(l,k) =

lX

i=1

kX

j=1

(ei ⌦ ej)(ej ⌦ ei)
T
, (B23)

where ei (ej) is a vector of dimension l (k) with zero entries except the i-th (j-th) entry. Since we only have two
types of fields (modes and adjoints), it follows that k = 2, and l = N represents the number of modes we have. This
way, a general transformation matrix for N modes can be written as

TN = PC
(N,2)(T⌦ 11N ) . (B24)

5. Dynamical matrix of the dissipative ring in the quadrature representation

The dynamical matrix M can be explicitly written as

M = TDT
† =

0

BBBBB@

�1/2 0 Im(J12 + �12) Re(J12 � �12) �Im(J31 � �31) Re(J31 � �31)
0 �1/2 �Re(J12 + �12) Im(J12 � �12) �Re(J31 + �31) �Im(J31 + �31)

�Im(J12 � �12) Re(J12 � �12) �2/2 0 �Im(J32 � �32) Re(J32 � �32)
�Re(J12 + �12) �Im(J12 + �12) 0 �2/2 �Re(J32 + �32) �Im(J32 + �32)
Im(J31 + �31) Re(J31 � �31) Im(J32 + �32) Re(J32 � �32) �3/2 0
�Re(J31 + �31) Im(J31 � �31) �Re(J32 + �32) Im(J32 � �32) 0 �3/2

1

CCCCCA
, (B25)

which is time-independent for the full model (since the hopping Jij , squeezing �ij , and damping i parameters are
explicitly time-independent). In contrast to the mode representation, this matrix is completely real, which is an
important feature in this representation for the full model.
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6. Dynamical matrix of the optical isolator in the mode representation

The dynamical matrix of i! hae↵ [!]i = De↵ [!] hae↵ [!]i in the basis ae↵ = (a1, a2, a
†
1, a

†
2)

T is

De↵ [!] =
1

2

0

B@

��1[!]� 1 �i (2J + iµ�[!]) 0 �i (2�+ i⌫�[!])
�i (2J⇤ + iµ

⇤�[!]) ��2[!]� 2 �i (2�� i⌫�[!]) 0
0 i (2�⇤ � i⌫

⇤�⇤[!]) ��⇤1[!]� 1 i (2J⇤
� iµ

⇤�⇤[!])
i(2�⇤ + i⌫

⇤�⇤[!]) 0 i(2J � iµ�⇤[!]) ��⇤2[!]� 2

1

CA , (B26)

7. Dynamical matrix of the optical isolator in the quadrature representation

Using the same transformation as above, we can recover the following dynamical matrix for the e↵ective model in the
quadrature representation

Me↵ [!] =
1

2

0

B@

�1 �Re(�1[!]) Im(�1[!]) 2 Im(J + �) +Re ((µ+ ⌫)�[!]) 2Re(J � �)� Im((µ� ⌫)�[!])
�Im(�1[!]) �1 �Re(�1[!]) �2Re(J + �) + Im((µ+ ⌫)�[!]) 2 Im(J � �) +Re((µ� ⌫)�[!])

�2 Im(J � �) +Re((µ⇤
� ⌫)�[!]) 2Re(J � �)� Im((µ⇤ + ⌫)�[!]) �2 �Re(�2[!]) Im(�2[!])

�2Re(J + �) + Im((µ⇤
� ⌫)�[!]) �2 Im(J + �) +Re((µ⇤ + ⌫)�[!]) �Im(�2[!]) �2 �Re(�2[!])

1

CA , (B27)

which is frequency-dependent and complex for the non-Markovian correction.

8. Derivation of the energies by transforming the system to momentum space

Note, that this derivation closely resembles the calculations done in Clerk [14].

For ease of notation, we will use a di↵erent labeling convention for the beam-splitter interaction between mode
1 and 2, namely, J21 = J

⇤
12. More generally, we can write Jjj0 = J

⇤
j0j . Also, note that even though we use the label

a3 for the auxilliary, mode 1 and mode 3 still only exhibit a distance of 1 from each other, thus we could also write
a3 ! a20 . However, this would become a bit messy to read, and thus we stay at the usual notation but keep in mind
that the distance is just 1 in the real-space lattice. With this, our Hamiltonian (for N = 3) is written as

Hsys = J21a
†
2a1 + J31a

†
3a1 + J32a

†
3a2 +H.c. =

X

j>j0

Jjj0a
†
j
aj0 + J

⇤
jj0a

†
j0aj . (B28)

If all interactions are the same J ⌘ J21 = J31 = J32, which implies that the gauge-invariant phase is equally distributed
over all interactions �/3, the system becomes translationally invariant. Thus, can employ Blochs theorem [46] and
write the basis states as a sum of plane-wave solutions. For this, we introduce the single-particle position eigenstate
|ji ⌘ a

†
j
|0i (where |0i is our vacuum state) and write the plane-waves as a linear combination of position states

|kmi =
1
p
N

X

j

e
ikmj

|ji , (B29)

with the single particle wave-vector

km =
2⇡

N
m, (B30)

where m = 0,±1 are di↵erent values for the quasi-momentum. Similarly, using the reverse transformation gives us

|ji =
1
p
N

X

m

e
�ikmj

|kmi . (B31)

In the 1st quantized picture, the momentum space Hamiltonian is simply
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Hk =
X

m

hkm|H|kmi| {z }
H(km)

|kmihkm| , (B32)

where H(km) = E(km), if |kmi diagonalizes our system. However, by identifying |kmi ⌘ b
†
m
|0i, we can directly work

in the second-quantized picture. We can employ the orthogonality condition for complex exponentials, namely

X

j

e
i(m0�m)j = N�m,m0 , (B33)

which implies

Hk =
X

j>j0

J

0

@ 1

N

X

m,m0

e
�ikmj

e
ikm0 j0

1

A b
†
m
bm0 + J

⇤

0

@ 1

N

X

m,m0

e
�ikm0 j0

e
ikmj

1

A b
†
m0bm

=
X

m,m0

J

0

@ 1

N

X

j0

e
�ikm(j0+1)

e
ikm0 j0

1

A b
†
m
bm0 + J

⇤

0

@ 1

N

X

j0

e
�ikm0 j0

e
ikm(j0+1)

1

A b
†
m0bm

=
X

m,m0

J

0

@ 1

N

X

j0

e
i(km0�km)j0

1

A

| {z }
�m,m0

e
�ikm b

†
m
bm0 + J

⇤

0

@ 1

N

X

j0

e
i(km�km0 )j0

1

A

| {z }
�m,m0

e
ikm b

†
m0bm

=
X

m

2Re
�
J e

�ikm
�
b
†
m
bm =

X

m

2|J | cos((�� 2⇡m)/3) b†
m
bm .

This can be more compactly written as

Hk =
X

m=0,±1

!̄mb
†
m
bm , (B34)

where

!̄m ⌘

X

m

2Re
�
J e

�ikm
�
=
X

m

2|J | cos((�� 2⇡m)/3) , (B35)

are eigenenergies of the Hamiltonian in the momentum-representation. To write Hk in the matrix notation, we
introduce the momentum-space mode vector b = (b�1, b0, b1, b

†
�1, b

†
0, b

†
1)

T , and get

Hk =
X

n,m

b
†
n
(Hk)nmbm , with Hk = diag(!̄�1, !̄0, !̄1, !̄�1, !̄0, !̄1) . (B36)

Note, that the energies come in pairs, but since Hk is Hermitian, they have the same value for the modes and their
adjoint. However, this is di↵erent for the dynamical matrix A,

Ak = �i⇤zHk = �i diag(!̄�1, !̄0, !̄1,�!̄�1,�!̄0,�!̄1) . (B37)

meaning that real eigenvalues of the isolated system are now fully imaginary and come in pairs with opposite signs.
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9. Fourier-transform and convolution theorem

a. Proof of convolution theorem

Here we proof the convolution theorem using Fubini’s theorem (in short lets us exchange the measure of the integrals).
It is a quite standard procedure, but shows how memory e↵ects (the past becoming relevant in the time-integral) can
appear as a consequence from it:

F
�1
n
g̃[!] · f̃ [!]

o
(t) =

1
p
2⇡

Z 1

�1

✓
1
p
2⇡

Z 1

�1
g(⌧)e�i!⌧

d⌧
1
p
2⇡

Z 1

�1
f(⌧ 0)e�i!⌧

0
d⌧

0
◆
e
i!t

d!

=
1
p
2⇡

Z 1

�1

Z 1

�1
g(⌧) f(⌧ 0)

✓
1

2⇡

Z 1

�1
e
�i!(⌧+⌧

0�t)
d!

◆

| {z }
= �(⌧ + ⌧

0 � t)

d⌧ d⌧
0

=
1
p
2⇡

Z 1

�1

Z 1

�1
g(⌧)f(⌧ 0)�(⌧ + ⌧

0
� t)d⌧ d⌧ 0

=
1
p
2⇡

Z 1

�1
g(⌧)f(t� ⌧)d⌧

=
1
p
2⇡

(g ⇤ f)(t) .

⇤ (B38)

b. Fourier-transforming the equations of motion of the optical isolator from frequency to time

We use this the convolution theorem above, to apply the reverse Fourier-transform on i! ha1,2[!]i. This gives us

F
�1

(
i! ha1[!]i

)
(t) = @t ha1(t)i

= �
1

2


1
p
2⇡

⇣
�1 ⇤ ha1i

⌘
(t) + 1 ha1(t)i

�
� i


J ha2(t)i+

iµ

2

1
p
2⇡

⇣
� ⇤ ha2i

⌘
(t)

�
� i


� ha

†
2(t)i+

i⌫

2

1
p
2⇡

⇣
� ⇤ ha†2i

⌘
(t)

�

= �


�1 + 1

2

�
ha1(t)i � i


J + iµ

�

2

�
ha2(t)i � i


�+ i⌫

�

2

�
ha

†
2(t)i ,

F
�1

(
i! ha2[!]i

)
(t) = @t ha2(t)i

= �
1

2


1
p
2⇡

⇣
�2 ⇤ ha2i

⌘
(t) + 2 ha2(t)i

�
� i


J
⇤
ha1(t)i+

iµ
⇤

2

1
p
2⇡

⇣
� ⇤ ha1i

⌘
(t)

�
� i


� ha

†
1(t)i �

i⌫

2

1
p
2⇡

⇣
� ⇤ ha†1i

⌘
(t)

�

= �


�2 + 2

2

�
ha2(t)i � i


J
⇤ + iµ

⇤�

2

�
ha1(t)i � i


�� i⌫

�

2

�
ha

†
1(t)i ,

(B39)

where we used the approximation that the shared reservoir is highly damped and thus static from the point of view
of hai(t� ⌧)i, implying ⌧ ⌧ t and thus

hai(t� ⌧) ⇡ hai(t)ii . (B40)
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C. S-MATRIX

1. Proof of transformation formula

Here, we prove S̃[!] = T
†
S[!]T:

Since M = TDT
†, and �[!] = (i!11�M)�1, it follows

��1[!] = (i!11�TDT
†) = TT

†(i!11�TDT
†)TT

† = T(i!T
†11T| {z }
11

�T
†
T|{z}

11

DT
†
T|{z}

11

)T† = T(i!11�D)T†
,

(C1)

taking the inverse of both expressions gives us with (T†) = T
�1 the following

�[!] = (i!11�M)�1 =
�
T(i!11�D)T†��1

() (i!11�M)�1 = T(i!11�D)�1
T

†
, (C2)

and by introducing the susceptibility in the mode-representation

�̃[!] ⌘ (i!11�D)�1
, (C3)

we can relate both via

�[!] = T�̃[!]T†
. (C4)

Finally, this implies

S̃[!] = T
†
S[!]T = T

†
⇣
11�
p

K�[!]
p

K

⌘
T = 11� (T†p

KT)| {z }
p

K̃

(T†�[!]T)| {z }
�̃[!]

(T†p
KT)| {z }
p

K̃

=
h
11�

p
K̃�̃[!]

p
K̃

i
,

(C5)

where
p
K̃ is the matrix with damping elements in the mode-basis. This concludes the proof - qed .

2. Alternative way of enforcing non-Markovianity to the susceptibility matrix and the S-matrix

Note that the only frequency dependence of the S-Matrix resides within the susceptibility �[!]. For the three-mode
model with a frequency-independent Langevin matrix M, the susceptibility becomes �[!] = (i!11 �M)�1. As the
identity matrix multiplied by the frequency is a relic of the time-derivative of the cavity mode di↵erential equations
(due to Fourier transforming), we can also find a way to treat the auxiliary mode as Markovian - without doing a formal
(adiabatic) elimination of the di↵erential equations. This is useful since we are still in the full three-mode picture from
our point of view and can look at the complete system dynamics without referring to the reduced e↵ective model.
To be more precise, by transforming eqs. (3.30) into frequency space, the di↵erential operator becomes @t ! i!,
and since the dynamics of a stationary system vanishes @t hai(t)i = 0, the same is true in frequency space with
i! hai[!]i = 0. This is similar to saying that we can tune the correlation times for each cavity of interest (meaning,
coupling them stronger to the reservoir, for example by dropping the quality factor of the respective resonators
resulting in a higher permeability between the system and the environment, e↵ectively assuming that cavity i has a
high i). But similarly, one can also assume that the frequency response of the cavity i approaches zero, where cavity
i then becomes stationary. This can be done more formally by introducing a new matrix ⌅m by hand

i!116 ! i!⌅m ⌘ i!(114 �m 112) = i! diag(1, 1, 1, 1,m,m) , (C6)

written in the quadrature basis. In our case, we want to have control over the frequency response of the auxiliary,
thus we the system-specific parameter m 2 [0, 1] is related to the correlation times by
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m =

(
1, for ⌧3 ⇡ ⌧1,2
0, for ⌧3 ⌧ ⌧1,2

, (C7)

where m = 1 is the non-Markovian regime with vanishing correlation time and memory e↵ects, and m = 0 is the
Markovian regime with memoryless dissipation and is local in time. Next, it is easily shown that the limiting cases
are

1. non-Markovian: lim
m!1

i!⌅m = i!⌅1 = i!11 , (C8a)

2. Markovian: lim
m!0

i!⌅m = i!⌅0 = i! diag(1, 1, 1, 1, 0, 0) . (C8b)

Inserting this back into Eq. (4.5) results in the S-matrix

Sm[!] ⌘
h
11�
p

K�m[!]
p

K

i
=
h
11�
p

K (i!⌅m �M)�1
p

K

i
, with �m[!] ⌘ (i⌅m[!]�M)�1

, (C9)

which can be either in the non-Markovian or the Markovian limit for the three-mode model.

3. Expressing the S-matrix in terms of damping rates

Using Eq. (3.62), we can find a di↵erent way to express the S-matrix, which will end up in a novel, yet quite general
statement. To understand what this representation entails, can be seen as a challenging, but probably insightful
endeavour for future research. First we note, that the susceptibility matrix fulfills

�̃†[!] =
⇣
(i!11�D)�1

⌘†
=
�
i(�!)11�D

†��1
, (C10)

where we used the fact that
�
L
�1
�†

=
�
L
†��1

for any invertible matrix L. Next, we consider the dissipative ring with
�ij = 0 =) h2 = 0, where it follows for Eq. (3.62)

D = �D†
� K̃ . (C11)

Now, we re-express �̃[�!] as

�̃[�!] = (i(�!)11�D)�1 =
⇣
i(�!)11 +D

† + K̃

⌘�1
= �

⇣
i!11� K̃�D

†
⌘�1

. (C12)

Since K̃ is a diagonal matrix, we can express it as K̃ =
P

j
j |jihj| and write it into the argument of the �̃ function,

giving us

�̃[�!] = �

0

@i

NX

j

(! + ij)|jihj|�D
†

1

A
�1

= �
�
i diag(! + i1, · · · ,! + iN )�D

†��1

⌘ ��̃†[�! + i1, · · · ,�! + iN ] .

(C13)

Note, that the last equality can be made less ambiguous after impedance matching with i/2 ⌘ , resulting in

�̃[�!] = ��̃†[�! + i2, · · · ,�! + i2] ⌘ ��̃†[�! + i2] . (C14)

If we know calculate the adjoint
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�̃†[�!] = (i!11�D
†)�1 =) �̃†[�! + i1, · · · ,�! + iN ] =

�
i diag(! + i1, · · · ,! + iN )⇤ �D

†��1

=
�
i diag(! � i1, · · · ,! � iN )�D

†��1
,

(C15)

it can be related to �̃[�!] as

�̃[�!] = ��̃†[�! + i1, · · · ,�! + iN ] , or conversely �̃[!] = ��̃†[! + i1, · · · ,! + iN ] . (C16)

This equality of the susceptibilities has implications for the S-matrix. Recall that the S-matrix is given by

S̃[!] = 11�
p

K̃�̃[!]
p

K̃ , (C17)

then it follows from the susceptibility matrix,

S̃[�!] = 11 +
p
K̃�̃†[�! + i1, · · · ,�! + iN ]

p
K̃ , (C18)

which gives us

S̃[�!] = 211� S̃
†[�! + i1, · · · ,�! + iN ] . (C19)

We can also rearrange this expression

11 =
S̃[�!] + S̃

†[�! + i1, · · · ,�! + iN ]

2
. (C20)

The last expression tells us, how the S-matrix and its adjoint relate directly, which is di↵erent to the formula used in
the main text,

S̃[�!] = ⇤xS̃
⇤[!]⇤x , (C21)

which tells us that the action of flipping the sign in front of the frequencies is the same as taking the conjugate and
flipping blocks. For the case derived here, the S-matrix for negative frequencies can be expressed as its adjoint with an
additional phase shift in energy due to the damping rates ̃. This shift extends the frequencies to the complex plane.
Now, its visible how damping rates explicitly a↵ect the scattering behaviour of the system. Since the only condition
we assumed in the beginning was that all squeezing interactions vanish, this equation holds true for all systems which
can be written as a bilinear BdG Hamiltonian of a similar form.

4. Non-Markovian S-matrix for the optical isolator

The non-Markovian S-matrix for symmetric damping rates  ⌘ i/2 is

S̃e↵ [!] =

0

BBB@

1� 2
i2!++�[!]

2(ei(�+i⇡/2)�0+�[!])
(i2!++�[!])2�(ei(�+i⇡/2)�0+�[!])(e�i(��i⇡/2)�0+�[!])

2(e�i(��i⇡/2)�0+�[!])
(i2!++�[!])2�(ei(�+i⇡/2)�0+�[!])(e�i(��i⇡/2)�0+�[!])

1� 2
i2!++�[!]

1

CCCA
, (C22)

which becomes for the unidirectional limit (recovering the adiabatic result by assuming 3 �  =) �[!]! �0)
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S̃e↵ [!] =

0

B@
1� 2

i2!++�[!]
2(�[!]⌥�0)

(i2!++�[!])2+(�2
0��2[!])

2(�[!]±�0)
(i2!++�[!])2+(�2

0��2[!])
1� 2

i2!++�[!]

1

CA 3�
����!
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B@
1� 2

i2!++�0

2(�0⌥�0)
(i2!++�0)2

2(�0±�0)
(i2!++�0)2

1� 2
i2!++�0

1

CA , (C23)

where the upper (lower) sign stands for � = �R (� = �L). For a reciprocal setting � = �0 = 0, the diagonal elements
are the same as for the above regime, where transmissions elements become equal

(S̃e↵ [!])12 = (S̃e↵ [!])21 =
2 (i�0 + �[!])

(i2! + + �[!])2 � (i�0 + �[!])
2 , (C24)

and the scattering probabilities for the resonant, impedance-matched case read

|(S̃e↵ [0])11|
2 = |(S̃e↵ [0])22|

2 = 0 , and |(S̃e↵ [0])12|
2 = |(S̃e↵ [0])21|

2 =
1

5
. (C25)

5. Scattering behaviour of the optical isolator for quadratures

(a) (b) (c)

(d) (e) (f)

FIG. 30. Markovian (solid) and non-Markovian (dashed) scattering probabilities of the optical isolator for x – quadratures, plotted
against frequency for di↵erent limits of �. We assume the parameters C = 1 and |J |/ = 1. The first two pictures in each row
show  = i/2, and the last picture in each 1,2 = 3/4 = . (a) Unidirectional case for � = �R for symmetric dissipation. The
behaviour is the same as in Fig. 12b, with |Sxixi |2 = |Sx1x2 |2 = 0, and |Sx2x1 |2 = 1. (b) Nonreciprocal case for � = �L, leading
to |Sx1x2 |2 = 1, and |Sa2a1 |2 = 0. (c) The same as (a) with � = �R but in the asymmetric regime. The non-Markovian case
converges to the Markovian limit since the auxiliary is damped stronger. (d) Reciprocal case for � = 0 in the symmetric regime.
Di↵erent to the three-mode model, the dynamical matrix Me↵[!] is frequency dependent, and thus not real. Similar to modes
in the full and e↵ective model, quadrature curves also become asymmetric for finite !. (e) Reciprocal case for � = ⇡, with the
same behaviour as (d) only flipped around the x-axis. (f) Reciprocal case for � = 0 for asymmetric damping rates. Again, the
non-Markovian curve converges to the Markovian limit.
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D. NOISE SPECTRAL DENSITY

1. Explicit form of the input-correlation matrix in the quadrature basis

We can explicitly write the input correlator-matrix as

hvin[!]v
T

in[!
0]i =

0

BBBBBBBB@
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2. Explicit form of the output-correlation matrix in the mode basis

We have shown how the transformation is still viable for the output-covariance and the form of Eq. (5.20) is justified,
which can now be used to find a adequate expression for the output-noise,
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giving us

S̃out[!] =
S̃[!]S̃inS̃

†[!] + S̃[�!]S̃inS̃
†[�!]

2
(D3)

3. Proof of transformation formula between the mode and the quadrature basis of the output-noise

Here we intent to proof that Cout[!,!0] = TC̃out[!,!0]T†. First, we transform the right hand side to the quadrature
basis with T, from that it follows
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which is exactly the result for the output-covariance matrix in the quadrature basis, see Eq. (5.6).
As a last remark we note that the transformation in the opposite direction is only valid up to the point where we
assume that S[�!] = S

⇤[!], as this does not hold for mode-operators, namely, we need to transform Eq. (5.17) and
not Eq. (5.19).

4. Output-noise in the reciprocal limit of the optical isolator

(a) (b)

FIG. 31. Output-noise in the reciprocal limit for the optical isolator with C = 1, and  ⌘ i/2. In reciprocal limits, cross-
correlations become complex. This behaviour was explained for the three-mode model, see discussion in Sec. VIA.

5. Output-noise spectrum of the optical isolator for quadratures

(a)
(b)

FIG. 32. Markovian (solid) and non-Markovian (dashed) quadrature elements of the output-noise matrix for the optical isolator
with varying values of � and thermal-inputs, plotted against !/. Parameters are C = 1 and |J | = |µ2|�0/2. (a) Comparison
between �R (Left) and �L (Right) for the input-occupations n̄1 = 10, n̄2 = 0. The behaviour is the same as for Fig. 13a. (b) Also
similar to Fig. 13b, with the only di↵erence that cross-correlations are always real.
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6. Output-noise spectrum of the optical isolator for asymmetric dissipation rates

(a)

(b) (c)

FIG. 33. Markovian (solid) and non-Markovian (dashed) elements of the output-noise matrix for the optical isolator with varying
values of � and thermal-inputs, plotted against !/. Parameters are C = 1 with  = 1,2 = 3/4, and |J | = |µ2|�0/2. (a)
Comparison between �R (Left) and �L (Right) for the input-occupations n̄1 = 10, n̄2 = 0. (Left) Here, fluctuations entering port
1 are fully transferred to output 2 with S

a†
2a2

[0] = 10.5, and S
a†
1a1

[0] = 0. (Right) Here, S
a†
1a1

[0] = 0.5, and S
a†
2a2

[0] = 0, since

output 1 sees vacuum from port 2, but output 2 gets no input from the auxiliary. (b) Reciprocal case for � = 0 and n̄1 = 10, n̄2 = 0.
(c) Similar to (a, Left), but with inputs at both ports n̄1 = n̄2 = 10.
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E. DIFFUSION BEHAVIOUR OF SELECTED MODELS

1. Dissipative three-mode ring

a. Heatmaps of scattering probabilities for di↵erent cases

FIG. 34. Comparison of scattering probabilities plotted against �, for di↵erent values of !. In the upper row, heatmaps in the
mode basis are shown, and heatmaps for quadratures are in the lower row, respectively. The left column is the case !/ = �2,
the middle !/ = 0, and the right !/ = 2. If we focus on the upper row, we immediately see how scattering between modes and
adjoints are treated the opposite way, having the same behaviour for positive and negative frequencies only for unidirectional limits.
For any other value of the phase, transport is asymmetric in !. This is di↵erent for quadratures, which are always symmetric in
!, for all values of �.
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b. S-matrix coe�cients for asymmetric damping rates

(a)

(b)

FIG. 35. Markovian (solid) and non-Markovian (dashed) scattering probabilities for � = �R and asymmetric damping rates
 ⌘ 1,2 = 3/4, plotted against !/. Here, the same behaviour is seen as in Fig. 15, only with narrower curves, since the
auxiliary is closer to the Markovian limit. (a) Reflection coe�cients. (b) Transmission coe�cients.
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c. S-matrix coe�cients in the quadrature basis

Scattering probabilities for the unidirectional limit � = ↵12 = ↵31 = ↵32 = �R = ⇡/2 with  ⌘ i/2, which behave
similarly to the scattering probabilities in the mode basis.

(a)

(b)

FIG. 36. Markovian (solid) and non-Markovian (dashed) scattering probabilities in the quadrature basis for � = ↵12 = ↵31 =
↵32 = �R = ⇡/2, and  ⌘ i/2. Shown are the coe�cients between x-quadratures, since p-quadratures vanish (this comes from
our choice of ↵ij), as do elements between di↵erent quadratures. (a) Reflections for x-quadratures. (b) Transmissions between
x-quadratures. Compare with Fig. 15.
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d. Composition of the output-noise in the quadrature representation by scattering probabilities

(a)

(b)

(c)

FIG. 37. Diagonal elements of the output-noise spectrum in the quadrature representation composed of S-matrix amplitudes and
the incident vacua (acting as a noise floor) for � = �R and 1 = 2 = 3 = 2 for small thermal fluctuations entering the first
port: n1 = 1, n2 = n3 = 0. On the left side of each row, there is the diagonal element of the noise spectrum showing the output
fluctuations leaving the system. The second and third column is the respective non-zero S-matrix amplitude, where we chose to
show the vacuum contribution to the noise for this figure. The S-matrix probability amplitudes get scaled by a factor and by
adding them with the incident vacuum, we get the respective output noise spectrum element. Note, that any S-matrix amplitude
of di↵erent quadratures with the same index are zero, namely |Sxipi |2 = |Spixi |2 = 0, since we only consider linear driving and no
single-mode squeezed input.

e. Expressing output-noise in the mode basis by elements of the quadrature representation

Since the noise-matrix is symmetric in operator-ordering, an element (i, j) is always the same as the element (j, i).
However, switching labels i  ! j (for i 6= j), produces di↵erent e↵ects depending on the basis, where elements are
complex conjugated for modes, but undergo a sign change for quadratures. Additionally, without squeezing, elements
of the type Saiaj = S

a
†
ia

†
j
= Sxipi = 0 all vanish (where we suppressed the argument !), for all i, j. Thus, we can sum

this up as



E. 5

modes: quadratures:

Saiaj = S
a
†
ia

†
j
= 0 , Sxipi = 0 , 8 i, j , (E1a)

S
aia

†
j
= S

a
†
jai

, Sviwj = Swjvi , 8 i, j , where v, w 2 {x, p} , (E1b)

S
aia

†
j
= S

⇤
aja

†
i
, Sviwj = �Svjwi , i 6= j , where v 6= w 2 {x, p} . (E1c)

Note, that the noise for di↵erent quadrature types is the same

Sxixj = Spipj 8i, j . (E2)

Using all rules from above, we can transform the output-noise from the quadrature to the mode basis via T (see Eq.
(3.69)), and express it in this simple form

S̃out[!] =

0
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which implies that diagonal elements are always real (quadrature noise is never complex), but correlations in the
mode basis can become complex, due to terms of the form Sxipj . To understand whats going on, we will look at a
single element Sx1p2 and try to find an expression in terms of S-matrix elements. For this, we consider
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Since S̃
⇤
aiaj

[!] = S̃
a
†
ia

†
j
[!], we can rewrite this as (for n̄1 > 0, n̄2 = n̄3 = 0)
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which is a real and ! - symmetrized expression, encoding the phase-di↵erence between mode and adjoint scattering
amplitudes of the ports of interest. This has big implications: This tells us, that (in absence of squeezing), the
imaginary part in thermal-correlations tell us how di↵erent thermal noise of modes and adjoints will scatter through
the system. If they are asymmetric (which is maximized for the reciprocal limit), an imaginary part starts to appear
for correlations. If modes and adjoints are scattered the same way, the correlation between di↵erent quadratures
Sxipj = Spixj = 0 will vanish, which means that the noise-matrix will only have real elements.
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f. Rectification

As stated in the beginning of the thesis, see Sec. IIA, only the ratio of scattering probabilities needs to be conserved
for reciprocity. In a more quantitative manner, we can thus define two functions, the scattering rectification (in the
mode-basis)

⇠̃aiaj [!] ⌘
|S̃ajai |

2
� |S̃aiaj |

2

|S̃ajai |
2 + |S̃aiaj |

2
, (E8)

and the noise rectification (in the mode-basis)
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†
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, (E9)

which both track when the system is reciprocal. The scattering rectification just tests the unevenness between both
transmission directions. Consider Fig. 38, where in (a) the scattering rectification is shown in the mode basis ⇠̃a1a2 [!]
and in (b) in the quadrature basis ⇠x1x2 [!], for varying values of � plotted against !/. Comparing both, it becomes
clear that modes are tilted in that space, whereas quadratures are not. This re-enforces our observations regarding
the asymmetry in ! for modes. The last figure (c) shows the noise rectification ⇣̃12 in the mode basis for inputs
n̄1 = n̄2 = 0, and n̄3 6= 0. Sending in thermal fluctuations in port 3, will either end up at output 1 (for � = �L), or
output 2 (for � = �R), or both (in reciprocal limits), thus we can observe the di↵erence between the transport limits
with input 3. For � = �R we get ⇣̃12[0] = +1, and for � = �L we get ⇣̃12[0] = �1. This figure looks the same for
modes and quadratures, and shows that the output-noise is an always symmetric quantity.

(a) (b) (c)

FIG. 38. Rectifications for  ⌘ i/2 plotted against � and !/. (a) Asymmetric look of the scattering rectification ⇠̃12 in the
mode basis. (b) Symmetric look of the scattering rectification ⇠12 in the quadrature basis. (c) Symmetric noise rectification ⇣̃12 in
the mode basis for n̄1,2 = 0, n̄3 6= 0.
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2. Dissipative directional transistor

a. Isolating the gauge-invariant phases for the directional transistor

From the interaction scheme we see that there are only three relevant phases

⌧1 ⌘ ↵31 � ↵41 + ↵43 , (E10a)

⌧2 ⌘ �↵32 + ↵42 � ↵43 , (E10b)

⌧3 ⌘ ↵12 + ↵41 � ↵42 , (E10c)

where the Aharonov-Bohm phase of the three-mode model can be trivially reconstructed by summing up these new
phases

� = ⌧1 + ⌧2 + ⌧3 = ↵12 + ↵31 � ↵32 , (E11)

which is not relevant phase, but is consistent to the idea of ”splitting up the phase �” in this model. We then perform
the gauge-transformation haji ! ha0ji = e

i�j , giving us the following terms

1. ↵12 + �2 � �1 , 4. ↵32 + �2 � �3 ,

2. ↵31 + �1 � �3 , 5. ↵42 + �2 � �4 ,

3. ↵41 + �1 � �4 , 6. ↵43 + �3 � �4 ,

where three of these can be set to zero, since we only have three relevant phases. We choose to set 1., 4., and 5. to
zero. This implies

1.
!
= 0 =) �1 = �2 + ↵12 ,

4.
!
= 0 =) �2 = �3 � ↵32 ,

5.
!
= 0 =) �2 = �4 � ↵42 ,

where we make the choice �2 = ↵41 � ↵42, giving us

�1 = ↵12 + ↵41 � ↵42 = ⌧3 ,

�2 = ↵41 � ↵42 ,

�4 = ↵41 ,

�3 = ↵32 + ↵41 � ↵42 .

The remaining equations can then be expressed as

2. = ⌧1 + ⌧2 + ⌧3 ,

3. = ⌧3 ,

6. = �⌧2 .

Now we would be finished, but since we aim to have a specific form of the EOMs (for aesthetic and didactic purposes),
we can apply a last additional gauge ha1i ! e

i⌧3 ha1i, which we will simply denote with ha1i, since this action leaves
the physics invariant. With this, the interaction parameters become

J12 ! |J12|e
i⌧3 , J31 = |J31|e

i(⌧1+⌧2) , J32 = |J32| , (E12)

J41 ! |J41| , J42 = |J42| , J43 = |J43|e
�i⌧2 , (E13)
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b. Derivation of the e↵ective model of the transistor and explicit formulas

Here, we Fourier transform the EOMs of the full model, see Eq. (6.19d), and eliminate the third and the fourth mode,
similar to three-mode model to get an e↵ective model for the modes a1 and a2. Consider the following solutions

ha3[!]i =
1

i! + 3/2
(�iJ31 ha1[!]i � iJ32 ha2[!]i � iJ

⇤
43 ha4[!]i) , (E14)

ha4[!]i =
1

i! + 4/2
(�iJ41 ha1[!]i � iJ42 ha2[!]i � iJ43 ha4[!]i) , (E15)

where we introduce the susceptibility �i[!] ⌘ 1/(i! + i/2), �̄[!] ⌘ �3[!]�4[!], and the unit-less scaling factor
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leading to
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�
1

2
� �3[!]d̄[!]|J31|

2
� �4[!]d̄[!]|J41|

2 + i�̄[!]d̄[!] (J⇤
31J41J

⇤
43 + J31J

⇤
41J43)

⌘
ha1[!]i

�
�iJ12 + �3[!]d̄[!] (�J

⇤
31J32 + i�4[!]J

⇤
31J42J

⇤
43) + �4[!]d̄[!] (�J

⇤
41J42 + i�3[!]J

⇤
41J32J43)

�
ha2[!]i ,

(E18)

i! ha2[!]i =
⇣
�
2

2
� �3[!]d̄[!]|J32|

2
� �4[!]d̄[!]|J42|

2 + i�̄[!]d̄[!] (J⇤
32J42J

⇤
43 + J32J

⇤
42J43)

⌘
ha2[!]i

�
�iJ

⇤
12 + �3[!]d̄[!] (�J31J

⇤
32 + i�4[!]J41J

⇤
32J

⇤
43) + �4[!]d̄[!] (�J41J

⇤
42 + i�3[!]J31J

⇤
42J43)

�
ha2[!]i ,

(E19)

for the EOMs in the e↵ective picture. By also introducing

|�| := |J12| , �i[!] :=
1

i! + i/2
, �̄[!] := �3[!]�4[!] d̄[!] :=

1

1 + �̄[!]|J43|2
, (E20)

�1[!] := �3[!]d̄[!]|J31J32| , �2[!] := �4[!]d̄[!]|J41J42| , µ1[!] := d̄[!]|J31J42J43| , µ2[!] := d̄[!]|J41J32J43| ,
(E21)

and

�̄i[!] := 2�̄[!]d̄[!]|J3iJ4iJ43| ,
�̄i[!]

2
:=

i + 2�3[!]d̄[!]|J3i|2 + 2�4[!]d̄[!]|J4i|2

2
, (E22)

as new damping rates of the shared e↵ective reservoir, we get

i! ha1[!]i =

✓
�
�̄1[!]

2
+ i�̄1[!] cos ⌧1

◆
ha1[!]i

�

⇣
�1[!]e

�i(⌧1+⌧2) + �2[!]� i
�
µ1[!]�̄[!]e

�i⌧1 + µ2[!]�̄[!]e
�i⌧2 � |�|e

i⌧3
�⌘
ha2[!]i , (E23)

i! ha2[!]i =

✓
�
�̄2[!]

2
+ i�̄2[!] cos ⌧2

◆
ha2[!]i

�

⇣
�1[!]e

i(⌧1+⌧2) + �2[!]� i
�
µ1[!]�̄[!]e

i⌧1 + µ2[!]�̄[!]e
i⌧2 � |�|e

�i⌧3
�⌘
ha1[!]i , (E24)
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for the non-Markovian e↵ective model. The Markovian regime is reached for �i[! = 0] 2 R>0. This implies, that
�1 ⌘ �1[0],�2 ⌘ �2[0], µi ⌘ µi[0], d̄ ⌘ d̄[0], �̄i ⌘ �̄i[0], �̄i ⌘ �̄i[0] 2 R>0 are all positive real numbers. Thus, the
e↵ective EOMs in the Markovian regime are

i! ha1[!]i =
⇣
�
�̄1

2
+ i�̄1 cos ⌧1

⌘
ha1[!]i �

⇣
|�1|e

�i(⌧1+⌧2) + |�2|� i
�
|µ1|�̄e

�i⌧1 + |µ2|�̄e
�i⌧2 � |�|e

i⌧3
�⌘
ha2[!]i ,

(E25)

i! ha2[!]i =
⇣
�
�̄2

2
+ i�̄2 cos ⌧2

⌘
ha2[!]i �

⇣
|�1|e

i(⌧1+⌧2) + |�2|� i
�
|µ1|�̄e

i⌧1 + |µ2|�̄e
i⌧2 � |�|e

�i⌧3
�⌘
ha1[!]i , (E26)

which concludes our short derivation.

c. Di↵erent scattering probabilities for the directional transistor

(a) (b)

(c) (d)

FIG. 39. Comparison between scattering probabilities of the directional transistor for ! = 0,  ⌘ i/2, a fixed phase ⌧1 = ⇡/2,
plotted against ⌧2,3. This Figure supplements Fig. 29.
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d. Comparison scattering between two-ports with the noise of all ports for the directional transistor

(a) (b)

(c) (d)

(e) (f)

FIG. 40. Comparison between scattering probabilities and fluctuations at outputs for ! = 0,  ⌘ i/2, a fixed phase ⌧1 = ⇡/2,
plotted against ⌧2,3, with varying input-noise. This Figure shows the input nth = (10, 0, 10, 0) in the left column, and nth =
(0, 0, 10, 10) for the right column. This Figure supplements Fig. 29.
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