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Introduction

We see the world around us through light that is reflected from the objects in our vicinity and
carries the information about their shape and colour to our eyes. Even though the objects
under consideration in modern quantum mechanics are no longer visible to the naked eye, many
of them are probed through light signals and we gain information about them through the way
they interact with this light impinging on them. Nitrogen vacancy centers, mechanical resonators,
quantum dots, quantum bits or a single light mode in an optical cavity – all these systems are
probed by light signals and their reaction to that light signal gives us access to the physics
happening inside them. Originally derived in the context of transmission lines for electrical
signals, the theory of how a system reacts to an incoming signal from its environment, referred
to as input–output theory in the jargon of the subject, is therefore of general interest to scientists
trying to probe the most diverse kinds of quantum systems.

Standard input–output theory treats the systems mentioned above as coupled to a bath of
harmonic oscillators which provides an input to the system and into which the system answers
with an output. The standard formalism of input–output theory has been widely applicable
to quantum systems coupled to the electromagnetic field - the prime example for a field whose
normal modes are modelled as harmonic oscillators. The formalism however struggles in dealing
with systems that exhibit non-linearities in their own system modes. To extend the formalism
in a way that one can effectively derive perturbative results for such cases, we suggest a new
approach to input–output theory employing path integral methods from quantum field theory.
By framing the scenario of input–output theory in the language of non–equilibrium quantum field
theory, a rich toolbox of perturbative techniques becomes accessible and previously unsolvable
problems could become manageable. In this thesis, we will present this approach to input–output
theory based on the Keldysh path integral and showcase its use on two examples - one solvable
through the conventional methods and one where perturbation theory has to be employed.

The thesis is split into three chapters. We firstly introduce the theoretical background to our
topic, namely the standard approach to input–output theory in Sec. 1.2 and the Keldysh path
integral in Sec. 1.3, and subsequently detail the derivation of our novel approach in Sec. 1.4 in the
first chapter. We then move on to apply the new formalism to the damped harmonic oscillator
in the second chapter to elucidate our methods and compare our approach to the standard
input–output theory and afterwards treat the Kerr oscillator in the third chapter where we will
derive perturbative results for the output field of said system. Throughout the whole manuscript,
certain technical steps in the calculations will be omitted for the sake of readability, those that are
still crucial to the replicability of our derivations can be found in the appendix. Some theoretical
prerequisites have also been omitted from the main text and can be found in the appendix.
Furthermore certain equations will be boxed to highlight their overall importance.
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Chapter 1

Theoretical Formalism

In this chapter we derive the standard formalism of input–output theory as it is presented in
standard references on the topic such as [4] and outline the basic principles of the Keldysh path
integral formalism where we closely follow the introductory chapters of [7]. We then synthesize
these two approaches into the Keldysh path integral approach to input–output theory. This
novel approach builds on previous work by P. Potts.

1.1 General Setting

The physical setting we describe consists of a system S coupled to a bath of harmonic oscillators
B via the rotating–wave interaction V . The Hamiltonian of the complete setting is thus given
as follows,

Ĥ = ĤS + ĤB + V̂ , (1.1)

where the bosonic bath is described by the following Hamiltonian,

ĤB =
∑
k

ωk b̂
†
k b̂k,

[
b̂k, b̂

†
k′

]
= δk,k′ , (1.2)

and the coupling through the following term,

V̂ =
∑
k

(
gkâ

†b̂k + g∗k b̂
†
kâ
)
. (1.3)

The operator â describes a mode in the system here, the system Hamiltonian ĤS is left unspec-
ified.

1.2 Standard Input–Output Theory

Standard input–output theory describes the system and bath modes of the general setting men-
tioned above through the use of Heisenberg equations. We start here by deriving the time-
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dependence of a single bath mode,

d

dt
b̂k = i

[
Ĥ, b̂k

]
= i
∑
l

[
ωk b̂

†
l b̂l +

(
glâ

†b̂k + g∗k b̂
†
kâ
)
, b̂k

]
= −i

∑
l

(
δl,k b̂l + g∗l δl,kâ

)
= −i(ωk b̂k + g∗kâ), (1.4)

this differential equation yields the following solution (for details see A.1.1),

b̂k(t) = e−iωk(t−t0)b̂k(t0)− ig∗k

∫ t

t0

dτe−iωk(t−τ)â(τ)

= e−iωk(t−tN )b̂k(tN )− ig∗k

∫ t

tN

dτe−iωk(t−τ)â(τ), (1.5)

where we introduced the times t0, tN which are supposed to lie in the far past, far future respec-
tively.

Now we turn to the time-dependence of the system mode â,

d

dt
â = i

[
ĤS + ĤB + V̂ , â

]
= i
[
ĤS , â

]
+ i
[
ĤB , â

]
+ i
[
V̂ , â

]
. (1.6)

The second term in the equation above vanishes due to the following commutation relations,[
b̂k, â

]
=
[
b̂†k, â

]
= 0.

We therefore focus on the third term,

i
[
V̂ , â

]
= i
∑
k

[
gkâ

†b̂k + g∗k b̂
†
kâ, â

]
= −i

∑
k

gk b̂k

= −
∑
k

(
igke

−iωk(t−t0)b̂k(t0) + |gk|2
∫ t

t0

dτeiωk(t−τ)â(τ)

)
(1.7)

= −
√
κ

1√
κ

∑
k

igke
−iωk(t−t0)b̂k(t0)−

∑
k

|gk|2
∫ t

t0

dτeiωk(t−τ)â(τ),

where we introduced the coupling constant κ in the last step. We further introduce the input
and output operators,

b̂in(t) =
1√
κ

∑
k

igke
−iωk(t−t0)b̂k(t0), b̂out(t) =

1√
κ

∑
k

igke
iωk(tN−t)b̂k(tN ), (1.8)

as well as the bath spectral density,

ρ(ω) =
∑
k

|gk|2δ(ω − ωk). (1.9)

Using the last two quantities, we can express Eq. (1.7) as follows,

i
[
V̂ , â

]
= −

√
κ b̂in(t)−

∫ t

t0

dτ

∫ ∞

0

dω ρ(ω)e−iω(t−τ)â(τ). (1.10)
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With these simplifications the equation of motion of the bath mode â is,

d

dt
â = i

[
ĤS , â

]
−
√
κ b̂in(t)−

∫ t

t0

dτ

∫ ∞

0

dω ρ(ω)e−iω(t−τ)â(τ). (1.11)

Analogously we find,

d

dt
â = i

[
ĤS , â

]
−
√
κ b̂out(t)+

∫ tN

t

dτ

∫ ∞

0

dω ρ(ω)e−iω(t−τ)â(τ). (1.12)

Even though at this stage our equations only contain the input and output operators, we can
retrieve the bath modes at the times t0 and tN from the input–output operators,

b̂k(t0) =

√
κ

2πigk

∫ ωk+δω

ωk−δω

dω

∫ ∞

−∞
dt eiω(t−t0) b̂in(t), (1.13)

b̂k(tN ) =

√
κ

2πigk

∫ ωk+δω

ωk−δω

dω

∫ ∞

−∞
dt e−iω(tN−t) b̂out(t), (1.14)

for a proof of this relation see A.1.2.
From the equations of motion for the system mode â, Eqs. (1.12) & (1.11), we get the following

relation between the input and output operators,

b̂out(t) = b̂in(t)+

∫ tN

t0

dτ

∫ ∞

0

dω ρ(ω)e−iω(t−τ)â(τ), (1.15)

and we can derive their commutation relations,[
b̂in(t), b̂

†
in(t

′)
]
=
[
b̂out(t), b̂out(t

′)
]
=

1

κ

∫ ∞

0

dω ρ(ω)e−iω(t−t′). (1.16)

1.2.1 Markov Approximation

So far we treated time as a continuous quantity and made no assumptions on the spectrum of
the bath. Now we make the following assumptions:

• The bath consists of N equidistantly spaced bath modes, i.e. ωk = ω0 + kδω for k ∈ N.

• Time is discretized such that tj = t0 + jδt with j = 0, 1, 2, . . . , N and
tN = tN−1 = t0 + (N − 1)δt.

• The timestep of the discretization is connected to the discretization of the bath modes such
that δtδω = 2π

N .

With these assumptions, the bath modes expressed through the input and output operators from
Eq. (1.8) can be written as follows,

b̂k(t0) =

√
κ

igk

2N−1∑
j=0

eiωk(tj−t0)b̂in(tj), (1.17)

b̂k(tN ) =

√
κ

igk

2N−1∑
j=0

e−iωk(tN−tj)b̂out(tj). (1.18)
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Additionally to the discretization outlined above, we now make the following two approxima-
tions:

• The Fourier transform of â(τ) is peaked at a specific frequency Ω, where the peak has a
fixed width γ.

• The spectral density ρ(ω) is flat in frequency and around Ω can be approximated as follows
(Markov approximation),

ρ(ω) ≈ ρ(Ω) ∀ω ∈ (Ω− γ,Ω+ γ). (1.19)

These assumptions let us simplify the third term in the relation between input and output
operators from Eq. (1.15) as follows,∫ tN

t0

dτ

∫ ∞

0

dω ρ(ω)e−iω(t−τ)â(τ) ≈ ρ(Ω)

∫ tN

t0

dτ

∫ ∞

−∞
dωe−iω(t−τ)â(τ)

= ρ(Ω)

∫ tN

t0

2πδ(t− τ)â(τ) = 2πρ(Ω)︸ ︷︷ ︸
=:κ

â(t), (1.20)

where we extended the range of integration in frequency in the first step to employ the required
delta distribution correlations. The extension of the integration range is justified in [4] by the
argument that only nearly resonant frequencies are important here and the nonphysical negative
frequencies therefore contribute very little. Equivalently, using these approximations and the
relation, ∫ x0

−∞
dxδ(x− x0) =

1

2
, (1.21)

we find, ∫ t

t0

dτ

∫ ∞

0

dω ρ(ω)e−iω(t−τ)â(τ) ≈ κ

2
â(t). (1.22)

With these approximations we can express the equation of motion for the system mode â from
Eqs. (1.11) and (1.12) as follows,

d

dt
â = i

[
ĤS , â

]
− κ

2
â−

√
κ b̂in(t),

d

dt
â = i

[
ĤS , â

]
+

κ

2
â−

√
κ b̂out(t),

(1.23)

(1.24)

and get the simplified commutator relations,[
b̂in(t), b̂

†
in(t

′)
]
=
[
b̂out(t), b̂

†
out(t

′)
]
= δ(t− t′), (1.25)

as well as,

b̂out(t) = b̂in(t)+
√
κâ(t). (1.26)

The last equality is commonly referred to as the input–output relation. From this expression we
can interpret the outgoing mode as the reflection of the input mode together with an additional
signal originating from the cavity.
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We can further simplify our expressions by assuming that all coupling constants are equal,

igk := g ∈ R, (1.27)

and by rewriting the approximated spectral density,

ρ(ω) ≈ ρ(Ω) = g2ρ. (1.28)

With these simplifications we can write the discretized input-output operators as follows,

b̂in(t) =
1√
2πρ

∑
k

e−iωk(t−t0)b̂k(t0), (1.29)

b̂out(t) =
1√
2πρ

∑
k

eiωk(tN−t)b̂k(tN ). (1.30)

From these expressions we can intuitively understand the input operator as describing the wave
packet of all bath modes from the distant past evolved in time up until the time t. Equivalently,
the output operator describes the wave packet consisting of all bath modes in the far future

evolved back in time up until the time t. The expectation value ⟨b̂
†
out(t) b̂out(t)⟩ for example will

give us the number of photons per unit time at the time t in the outgoing wave packet.
Further details on the standard input–output formalism can be found in [4], [3] and [5].

1.3 Keldysh Formalism

In the following we give a short overview of the Keldysh formalism. We will stick closely to
the exposition done in [7], recent developments and experimental applications of the formalism
can be found in [12]. We follow the notation of [7] and therefore use a bar to denote complex
conjugation. We start by introducing the coherent states of the cavity mode â and the bath
modes b̂k,

â |ϕ⟩ = ϕ |ϕ⟩ , b̂k |φk⟩ = φk |φk⟩ . (1.31)

A coherent state in our treatment is defined as follows,

|ϕ⟩ =
∞∑

n=0

ϕn

√
n!

|n⟩ =
∞∑

n=0

ϕn

n!

(
â†
)n |0⟩ = eϕâ

†
|0⟩ , (1.32)

and is not normalized. This leads to the following identity for the inner product of two coherent
states,

⟨ϕ|ϕ′⟩ = eϕϕ
′
. (1.33)

Some heavily used identities for coherent states are mentioned in the following,∫
d[ϕ]e−|ϕ|2 |ϕ⟩ ⟨ϕ| = 1, d[ϕ] := d(Re{ϕ})d(Im{ϕ})/π, (1.34)

⟨ϕ| Ĥ(â†, â) |ϕ⟩ = H(ϕ, ϕ′) ⟨ϕ|ϕ′⟩ , (1.35)

where the last relation holds for any normally ordered operator Ĥ(â†, â). To denote the tensor
product of a state from the cavity and the states from the bath we introduce the following
notation,

|Ψ⟩ = |ϕ⟩
⊗
k

|φ⟩ , d[Ψ] = d[ϕ]
∏
k

d[φk], Ψ̄Ψ′ = ϕ̄ϕ′ +
∑
k

φ̄kφ
′
k, (1.36)
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t0tN−1

tN t2N−1

t
+∞ −∞

Figure 1.1: The closed time contour of the Keldysh formalism.

with it we express the identity in the combined Hilbert space as follows,

1 =

∫
d[Ψ]e−|Ψ|2 |Ψ⟩ ⟨Ψ| . (1.37)

As a consequence we compute the trace of an operator Ô as follows,

Tr
{
Ô
}
=

∫
d[Ψ]e−|Ψ|2 ⟨Ψ| Ô |Ψ⟩ . (1.38)

As is customary in quantum field theory, we consider the partition function of our state, here
given by the trace of the density matrix ρ̂ at time t,

Z = Tr{ρ̂(t)} = Tr
{
e−iĤ(t−t0)ρ̂0e

iĤ(t−t0)
}
= Tr

{
eiĤ(t−t0)e−iĤ(t−t0)ρ̂0

}
= Tr{ρ̂0} = 1, (1.39)

where we used cyclic permutability of the trace and the normalization condition. As a next step,
we insert 2N − 1 identities of the type from Eq. (1.37) where we evolve from t0 to tN−1 in the
first N − 1 steps and then backwards in time from tN−1 = tN to t2N−1 = t0 in the next N − 1
steps,

Z =

∫
D[Ψ]e−

∑2N−1
j=0 |Ψj |2 ⟨Ψ2N−1| eiδtĤ |Ψ2N−2⟩ ⟨Ψ2N−2| eiδtĤ |Ψ2N−3⟩ · · · (1.40)

⟨ΨN+1| eiδtĤ |ΨN ⟩ ⟨ΨN |1 |ΨN−1⟩ ⟨ΨN−1| e−iδtĤ |ΨN−2⟩ · · · ⟨Ψ1| e−iδtĤ |Ψ0⟩ ⟨Ψ0| ρ̂0 |Ψ2N−1⟩ .

See Fig. 1.1 for a sketch of the time contour. We now turn to evaluate the infinitesimal time
evolution steps,

⟨Ψj | e−iδtjĤ |Ψj−1⟩ = ⟨Ψj |
(

1 − iδtjĤ +O
(
δt2j
))

|Ψj−1⟩

= eΨ̄jΨj−1 − iδtjH(Ψ̄j ,Ψj−1)e
Ψ̄jΨj−1 +O

(
δt2j
)

≈ eΨ̄jΨj−1e−iδtjH(Ψ̄j ,Ψj−1). (1.41)

Here we introduced the time–step,

δtj = sign(N − j)δt.

Notice that the last relation in Eq. (1.41) is exact in the limit δt → 0. We further use the
common notation for path integrals,

D[Ψ] =

2N−1∏
j=0

d[Ψj ]. (1.42)
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With this notation and the evaluated infinitesimal time step evolution, we can write the Keldysh
partition function as a path integral,

Z =

∫
D[Ψ]eiS[Ψ],

S[Ψ] =

2N−1∑
j=1

δtj

[
iΨ̄j

Ψj −Ψj−1

δtj
−H(Ψ̄j ,Ψj−1)

]
+ iΨ̄0Ψ0 − i ln ρ0(Ψ̄0,Ψ2N−1).

(1.43)

(1.44)

1.4 Keldysh Approach to Input–Output Theory

In this section we detail the novel Keldysh path integral approach to input–output theory. Start-
ing from the Keldysh partition function derived in Sec. 1.3, we will derive the Keldysh input–
output action for the general scenario introduced in Sec. 1.1 and use it to define generating
functionals for the input and output field. From these quantities we will gain access to the
statistics of the input and output field.

1.4.1 Keldysh Input-Output Action

We start by inserting the Hamiltonian of our general scenario given in Eq. (1.1) into the expression
for the action of the Keldysh partition function from Eq. (1.44) which results in the following
action,

S[ϕ, φ] = SS [ϕ] + SB [φ] + SV [ϕ, φ]. (1.45)

We assume, that the initial state can be separated, ρ̂0 = ρ̂S ⊗ ρ̂B , and we introduce the tensor
product state of all coherent states of the bath at time tj , |φj⟩ =

⊗
k |φk,j⟩. With this the

constituents of the action mentioned above are,

SS [ϕ] =

2N−1∑
j=1

δtj

[
iϕ̄j

ϕj − ϕj−1

δtj
−HS(ϕ̄j , ϕj−1)

]
+ iϕ̄0ϕ0 − i ln ρS(ϕ̄0, ϕ2N−1), (1.46)

SB [φ] =
∑
k

2N−1∑
j=1

δtj

[
iφ̄k,j

φk,j − φk,j−1

δtj
− ωkφ̄k,jφk,j−1

]
+ i
∑
k

¯φk,0φk,0 − i ln ρB(φ̄0, φ2N−1), (1.47)

SV [ϕ, φ] = −
∑
k

2N−1∑
j=1

δtj
[
gkϕ̄jφk,j−1 + g∗kφ̄k,jϕj−1

]
. (1.48)

Here we used the following notation,

ρ(a, b) = ⟨a| ρ̂ |b⟩ .

In the following steps we will often make use of the bosonic Gaussian integral, the formula for
which can be found in App. A.2.1.

Since in input–output theory we are only interested in the bath states in the distant past and
future, we only need the information of the bath modes at t0 = t2N−1, which lie in the distant
past, and tN = tN−1, which lie in the distant future. Therefore we perform the path integral over
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the bath modes φk,1, . . . , φk,N−2, φk,N+1, . . . , φk,2N−2 for all values of k. The detailed calculation
of this integral can be found in the appendix, see App. A.2.2. We further introduce the following
notation to differentiate between fields on the forward and backwards part of the time contour,

ϕ+
j = ϕj , ϕ−

j = ϕ2N−1−j , for j ∈ {0, . . . , N − 1}, (1.49)

and, analogously to the input and output operators in Eq. (1.8), we define the input and output
fields,

φ+
in,j =

1√
κ

∑
k

igke
−iωk(tj−t0)φk,0, φ−

in,j =
1√
κ

∑
k

igke
−iωk(tj−t0)φk,2N−1, (1.50)

φ+
out,j =

1√
κ

∑
k

igke
iωk(tN−tj)φk,N−1, φ−

out,j =
1√
κ

∑
k

igke
iωk(tN−tj)φk,N . (1.51)

After performing the integration over the mentioned bath modes we get the following expression
for the partition function,

Z =

∫ 2N−1∏
j=0

d[ϕj ]

(∏
k

d[φk,0]d[φk,N−1]d[φk,N ]d[φk,2N−1]

)
eiS̃[ϕ,φ], (1.52)

with

S̃[ϕ, φ] = S̃S [ϕ] + S̃B [φ] + S̃V [ϕ, φ], (1.53)

S̃S [ϕ] = SS [ϕ] + iδt2
N−2∑
j=1

j∑
l=1

∫ ∞

0

dωρ(ω)
[
ϕ̄+
j+1ϕ

+
l−1e

−iω(tj−tl) + ϕ̄−
l−1ϕ

−
j+1e

iω(tj−tl)
]
, (1.54)

S̃B [φ] = i
∑
k


φ̄k,0

φ̄k,N−1

φ̄k,N

φ̄k,2N−1


T

1 0 0 0
−e−iωk(tN−t0) 1 0 0

0 −1 1 0
0 0 −eiωk(tN−t0) 1




φk,0

φk,N−1

φk,N

φk,2N−1


− i ln ρB(φ̄0, φ2N−1), (1.55)

SV [ϕ, φ] = iδt
√
κ

N−1∑
j=1

[
ϕ̄+
j φ

+
in,j−1 − φ̄+

out,jϕ
+
j−1 − ϕ̄−

j−1φ
−
out,j + φ̄−

in,j−1ϕ
−
j

]
. (1.56)

Where we employed the spectral density from Eq. (1.9) in the second equation. Analogously to
the procedure in the discretized version of standard input–output theory from Sec. 1.2 we can
assume the bath modes to be equidistantly spaced such that

ωk = ω0 + kδω, δωδt =
2π

N
, k ∈ {0, . . . , N − 1}, (1.57)

and invert the input–output fields to retrieve the bath modes at the initial or final time,

φk,0 =

√
κ

igk

1

N

N−1∑
j=0

eiωk(tj−t0)φ+
in,j , φk,2N−1 =

√
κ

igk

1

N

N−1∑
j=0

eiωk(tj−t0)φ−
in,j , (1.58)

φk,N−1 =

√
κ

igk

1

N

N−1∑
j=0

e−iωk(tN−tj)φ+
out,j , φk,N =

√
κ

igk

1

N

N−1∑
j=0

e−iωk(tN−tj)φ−
out,j . (1.59)
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These relations can now be used to express the action S[ϕ, φ] completely in terms of the input-
output fields. Additional to the assumption of equidistant spacing of the bath modes we now
assume a flat spectral density,

igk = g ∈ R ∀ k, (1.60)

and express the coupling strength κ through the spectral density,

κ =
2πg2

δω
= g2Nδt. (1.61)

Now we can for instance rewrite,

N−1∑
k=0

φ̄k,0φk,0 =

N−1∑
k=0

κ

|gk|2
1

N2

N−1∑
j,l=0

e−iωk(tj−tl)φ̄+
int,jφ̄

+
in,l =

N−1∑
k=0

δt

N

2N−1∑
j,l=0

e−iωk(tj−tl)φ̄+
in,jφ

+
in,l

=

N−1∑
k=0

δωδt2

2π

2N−1∑
j,l=0

e−iωk(tj−tl)φ̄+
in,jφ

+
in,l =

N−1∑
j=0

δtφ̄+
in,jφ

+
in,j , (1.62)

where in the last two steps we used the equidistant spacing from Eq. (1.57) and the properties of
the Dirac delta distribution (for more detail see (A.1) in the appendix), which yields a factor of

2π
δj,l
δt in the limit of continuous time. We now turn to the spectral density in SS [ϕ]. Analogously

to the treatment in Sec. 1.2 we make the assumption that ρ(ω) ≈ ρ(Ω) = 2πκ which results in,∫ ∞

0

dωρ(ω)e−iω(tj−tl) = κ
δj,l
δt

. (1.63)

This again leads us to make the replacement,

N−1∑
j=0

l∑
j=0

δt2fj,l

∫ ∞

0

dωρ(ω)e−iω(tj−tl) → 1

2

N−1∑
j=0

δtκfj,j , (1.64)

where fj,l is an arbitrary function of the two indices and where we used the discrete version of
the identity given in Eq. (A.2). With these simplifications we find the Keldysh input-output
action,

Sio[ϕ, φin, φout] = Sio
S [ϕ] + Sio

B [φin, φout] + Sio
V [ϕ, φin, φout], (1.65)

where the constituents are,

Sio
S [ϕ] = SS [ϕ] + i

κ

2

N−2∑
j=1

δt
[
ϕ̄+
j+1ϕ

+
j−1 + ϕ̄−

j−1ϕ
−
j+1

]
, (1.66)

Sio
B [φin, φout] = i

N−1∑
j=0

δt
(
φ̄+
in,j φ̄+

out,j φ̄−
out,j φ̄−

in,j

)
1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1




φ+
in,j

φ+
out,j

φ−
out,j

φ−
in,j

 (1.67)

− i ln ρB(φin),

Sio
V [φin, φout] = SV [ϕ, φ̃]

= iδt
√
κ

N−1∑
j=1

[
ϕ̄+
j φ

+
in,j−1 − φ̄+

out,jϕ
+
j−1 − ϕ̄−

j−1φ
−
out,j + φ̄−

in,j−1ϕ
−
j

]
. (1.68)
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In the continuous limit these expression are,

Sio
S [ϕ] =

∫ tN

t0

dt
[
ϕ̄+(t)

(
i∂t + i

κ

2

)
ϕ+(t)− ϕ̄−(t)

(
i∂t − i

κ

2

)
ϕ−(t) (1.69)

−HS(ϕ̄
+(t), ϕ+(t)) +HS(ϕ̄

−(t), ϕ−(t))
]
,

Sio
B [φin, φout] = i

∫ tN

t0

dt
(
φ̄+
in(t) φ̄

+
out(t) φ̄

−
out(t) φ̄

−
in(t)

)
1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1




φ+
in(t)

φ+
out(t)

φ−
out(t)
φ−
in(t)

 (1.70)

− i ln ρB(φin),

Sio
V [φin, φout] = i

√
κ

∫ tN

t0

dt
[
ϕ̄+(t)φ+

in(t)− φ̄+
out(t)ϕ

+(t)− ϕ̄−(t)φ−
out(t) + φ̄−

in(t)ϕ
−(t)

]
. (1.71)

Here we dropped the boundary term in Sio
S [ϕ] since its influence should be negligible in the

presence of dissipation and under the assumption that t0 → −∞. The differential element is now
given as follows,

D[ϕ, φin, φout] = D[ϕ]D[φin]D[φout]

=

N−1∏
j=0

d[ϕ+
j ]d[ϕ

−
j ]

N−1∏
j=0

d[φ+
in,j ]d[φ

−
in,j ]

N−1∏
j=0

d[φ+
out,j ]d[φ

−
out,j ]

. (1.72)

1.4.2 Input States

In this subsection we will consider different input states. The input state here is the initial state
of the bath ρ̂B(φin) that appears in the bath part of the input–output action in Eq. (1.70). The
thermal state will play a central role in the following, for a definition and important properties
see A.2.3.

Thermal State

We firstly consider the case where the bath is in a thermal state at t0,

ρB(φ̄0, φ2N−1) = exp

[∑
k

e−βωk φ̄k,0φk,2N−1

]∏
k

(
1− e−βωk

)
. (1.73)

We further assume that all frequencies interacting with the bath can be set constant ωk ≈ Ω ∀k
and use the relation introduced in Eq. (1.62) to express the initial state through the input field,

ρB(φin) = exp

e−βΩ
N−1∑
j=0

δtφ̄+
in,jφ

−
in,j

(1− e−βΩ
)N

. (1.74)

Product of Coherent States

For the input being a product of normalized coherent states,

ρ̂B =
⊗
k

e−|αk|2 |αk⟩ ⟨αk| , (1.75)
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we find,

ρB(φ̄0, φ2N−1) =

(⊗
k

⟨φk,0|

)(⊗
k

e−|αk|2 |αk⟩ ⟨αk|

)(⊗
k

|φk,2N−1⟩

)

=
∏
k

e−|αk|2eφ̄k,0eᾱkφk,2N−1 = exp

[∑
k

φ̄k,0αk + ᾱkφk,2N−1 − |αk|2
]

= exp

N−1∑
j=0

(
φ̄+
in,j

∑
k

√
δt√
N

e−iωk(tj−t0)αk

+φ−
in,j

∑
k

√
δt√
N

eiωk(tj−t0)ᾱk −
∑
k

|αk|2 )

]
. (1.76)

We introduce the function f to encode the information over the input state,

fj =

N−1∑
k=0

αk√
Nδt

e−iωk(tj−t0), (1.77)

with this we can express the input state as follows,

ρB(φin) = exp

N−1∑
j=0

δt
(
fjφ̄

+
in,j + f̄jφ

−
in,j − |fj |2

). (1.78)

Details on this step can be found in A.2.3.
Through the coherent states αk, we can now implement an arbitrary function fj in the input

state. We mention two important examples in the following,
Pulse of vanishing temporal width:

αk = α

√
δt

N
eiωk(tl−t0) ⇒ fj = δj,lα. (1.79)

Monochromatic coherent signal:

αk = α
√
Nδtδk,q ⇒ fj = αe−iωq(tj−t0). (1.80)

Displaced Thermal State

The density matrix of a displaced thermal state is given as follows,

ρ̂B =
⊗
k

(
1− e−βωk

)
D̂(αk)e

−βωkâ
†
kâkD̂†(αk). (1.81)

Where we use the displacement operator D̂, a definition and important properties can be found
in the appendix, see A.2.3. We again evaluate the contribution in the input–output action,

ρB(φ0, φ2N−1) = ⟨φ0| ρ̂B |φ2N−1⟩

=
⊗
k

(
1− e−βωk

)
⟨φ0,k| D̂(αk)e

−βωkâ
†
kâkD̂†(αk) |φ2N−1,k⟩

=
⊗
k

(
1− e−βωk

)
∆k (1.82)
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using the relation from Eq. (A.41) above we get,

∆k = e−|αk|2+φk,2N−1ᾱk+φ̄k,0αk ⟨φk,0 − αk| e−βωkâ
†
kâk |φk,2N−1 − αk⟩ . (1.83)

Further using the relation from Eq. (A.28) we find,

ρB(φ0, φ2N−1) =

[∏
k

e−|αk|2(1−eβωk )(1− e−βωk)

]

exp

[∑
k

[
e−βωk φ̄k,0φk,2N−1 +

(
1− e−βωk

)
αkφ̄k,0 +

(
1− e−βωk

)
ᾱkφk,2N−1

]]
. (1.84)

Again we assume a flat spectral density for the relevant modes, exp(−βωk) ≃ exp(−βΩ), which
in the continuum limit leads to,

ρB(φ0, φ2N−1) =
(
1− e−βΩ

)N
exp

[∫ tN

t0

dt
[
e−βΩφ̄+

in(t)φ
−
in(t) +

(
1− e−βΩ

)(
f(t)φ̄+

in(t) + f̄(t)φ−
in(t)− |f(t)|2

)]]
. (1.85)

Note that N goes to infinity in the continuum limit and the prefactor
(
1− e−βΩ

)N
is simply

a shorthand for the normalization constant. From this expression we can also arrive at the
continuum limit of the thermal state from Eq. (1.74) by setting f to zero and at the limit of the
displaced coherent state by setting the temperature to zero.

1.4.3 Reduced Action for the System

In this subsection we consider the reduced action for our system, i.e. we integrate out the input
and output modes to achieve a description of the system alone that we can check against existing
descriptions of our setting. We begin by integrating out the output modes from the input-output
action Sio. Sio

S contains no input fields so we focus on Sio
B and Sio

V and find in the exponent,

Si[ϕ, φin] =Sio
S + iδt

N−1∑
j=0

[
φ̄+
in,jφ

+
in,j + φ̄−

in,jφ
−
in,j +

√
κ
(
ϕ̄+
j φ

+
in,j−1 + φ̄−

in,j−1ϕ
−
j

)]

− iδt

N−1∑
j=1

[
φ̄−
in,jφ

+
in,j +

√
κ
(
φ̄−
in,jϕ

+
j−1 + ϕ̄−

j−1φ
+
in,j

)
+ κϕ̄−

j−1ϕ
+
j−1

]
− i ln ρB(φin).

(1.86)

We introduce a new pair of fields,

φcl(t) =
1√
2

(
φ+(t) + φ−(t)

)
, φq(t) =

1√
2

(
φ+(t)− φ−(t)

)
. (1.87)

The superscripts ’cl’ and ’q’ stand for the classical and quantum components of the field. Intro-
ducing these fields is often referred to as a Keldysh rotation [7].
Calculating the necessary integrals and performing a Keldysh rotation as well as going to the
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continuum limit we find,

Si[ϕ, φin] = Si
S [ϕ] + Si

B [φin] + Si
V [ϕ, φin], (1.88)

Si
S [ϕ] = SS [ϕ] + iκ

∫ tN

t0

dt

[
ϕ̄q(t)ϕq(t)− 1

2
ϕ̄cl(t)ϕq(t) +

1

2
ϕ̄q(t)ϕcl(t)

]
, (1.89)

Si
B [φin] = i

∫ tN

t0

dt
[
φ̄+
in(t)φ

+
in(t) + φ̄−

in(t)φ
−
in(t)− φ̄−

in(t)φ
+
in(t)

]
− i ln ρB(φin), (1.90)

Si
V [ϕ, φin] = i

√
2κ

∫ tN

t0

dt
[
ϕ̄q(t)φ+

in(t)− φ̄−
in(t)ϕ

q(t)
]
. (1.91)

To integrate out the input modes as well, we revert back to the discrete notation and evaluate
the contribution from the boundary term,

ln
(
ρB(φin)

(
1− e−βΩ

)−N
)
=

N−1∑
j=0

e−βΩδtφ̄+
in,jφ

−
in,j +

(
1− e−βΩ

)
δt
[
fjφ̄

+
in,j + f̄jφ

−
in,j − |fj |2

]
. (1.92)

The factor
(
1− e−βΩ

)−N
serves as a normalization and will drop out of the integral during the

integration. We will neglect it from now on. This leads us to,

i
(
Si
B [φin] + Si

V [ϕ, φin]
)
=− δt

N−1∑
j=0

(
φ̄+
in,j φ̄−

in,j

)( 1 0
−1 1

)(
φ+
in,j

φ−
in,j

)

+

N−1∑
j=0

e−βΩδtφ̄+
in,jφ

−
in,j +

(
1− e−βΩ

)
δt
[
fjφ̄

+
in,j + f̄jφ

−
in,j − |fj |2

]

− δt

N∑
j=1

√
κ
(
ϕ̄+
j φ

+
in,j−1 + φ̄−

in,j−1ϕ
−
j − φ̄−

in,j−1ϕ
+
j−1 − ϕ̄−

j−1φ
+
in,j

)
.

(1.93)

As usual we employ the formula for the Gaussian integral, and performing the continuum limit
in all terms, we get the reduced action,

S[ϕ] =SS [ϕ] + i
√
2κ

∫ tN

t0

dt
(
f(t)ϕ̄q(t)− f̄(t)ϕq(t)

)
+ iκ

∫ tN

t0

dt

[
(2nB + 1)ϕ̄q(t)ϕq(t)− 1

2
ϕ̄cl(t)ϕq(t) +

1

2
ϕ̄q(t)ϕcl(t)

]
, (1.94)

where we introduced the occupation number of the bath,

nB =
1

eβΩ − 1
. (1.95)

The second term in Eq. (1.94) corresponds to a coherent Hamiltonian drive term of the following
form,

ĤD(t) = −i
√
κ
(
f(t)â† − f̄(t)â

)
, (1.96)
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and the last term corresponds to the action of a Markovian thermal bath [13]. The discrete
version of the action in Eq. (1.94) above is

S[ϕ] =SS [ϕ] + i
κ

2

N−1∑
j=1

δt
[
ϕ̄+
j+1ϕ

+
j−1 + ϕ̄−

j−1ϕ
−
j+1 − 2ϕ̄−

j−1ϕ
+
j+1

]
+ δt

√
κ

N−2∑
j=1

[
fj
(
ϕ̄−
j−1 − ϕ̄+

j+1

)
+ f̄j

(
ϕ+
j−1 + ϕ−

j+1

)]
+ δtκnB

N−2∑
j=1

(
ϕ̄−
j−1 − ϕ̄+

j+1

)(
ϕ+
j−1 − ϕ−

j+1

)
, (1.97)

with

SS [ϕ] =

N−1∑
j=1

δt

[
iϕ̄+

j

ϕ+
j − ϕ+

j−1

δt
−HS(ϕ̄

+
j , ϕ

+
j−1)

]
+

N−1∑
j=1

δt

[
iϕ̄−

j

ϕ−
j − ϕ−

j−1

δt
+HS(ϕ̄

−
j , ϕ

−
j−1)

]
+ iϕ̄0ϕ0 − i ln ρS(ϕ̄0, ϕ2N−1). (1.98)

1.4.4 Stationary Phase Approximation

In this subsection we derive a relation between the system field and the input and output fields
in the semi-classical limit of our field theoretic approach. In the semiclassical limit where ℏ
tends to zero, our system is expected to take those trajectories through its state space where the
action is stationary, hence this is called the stationary phase approximation. The relations we
derive with this approach will be the analogue to the input–output relation from the standard
input–output theory from Sec. 1.2. With the Keldysh rotation, we can rewrite the input-output
action as follows,

Sio
B [φin, φout] = i

∫ tN

t0

dt


φ̄cl
in(t)

φ̄q
in(t)

φ̄cl
out(t)

φ̄q
out(t)


T

1 0 −1/2 1/2
0 1 1/2 −1/2

−1/2 −1/2 1/2 −1/2
−1/2 −1/2 1/2 3/2




φcl
in(t)

φq
in(t)

φcl
out(t)

φq
out(t)

 (1.99)

− i ln ρB(φin),

Sio
V [ϕ, φin, φout] = i

√
κ

2

∫ tN

t0

dt
[(
ϕ̄cl(t) + ϕ̄q(t)

)(
φcl
in(t) + φq

in(t)
)

−
(
φ̄cl
out(t) + φ̄q

out(t)
)(
ϕcl(t) + ϕq(t)

)
−
(
ϕ̄cl(t)− ϕ̄q(t)

)(
φcl
out(t)− φq

out(t)
)

+
(
φ̄cl
in(t)− φ̄q

in(t)
)(
ϕcl(t)− ϕq(t)

)]
.

(1.100)

We are now interested in the relation between the input and output fields with the system fields
and each other for a stationary phase. To determine this, we compute the functional derivatives
of the input–output action, that we will simply refeer to as the action S in the following. For a
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definition of the functional derivative, see A.2.4.

i
δS

δφcl
out(t)

= −1

2
φ̄cl
out(t) +

1

2
φ̄cl
in(t)−

1

2
φ̄q
in(t)−

1

2
φ̄q
out(t) +

√
κ

2

(
ϕ̄cl(t)− ϕ̄q(t)

)
, (1.101)

i
δS

δφq
out(t)

= −3

2
φ̄q
out(t) +

1

2
φ̄cl
out(t)−

1

2
φ̄cl
in(t) +

1

2
φ̄q
in(t)−

√
κ

2

(
ϕ̄cl(t)− ϕ̄q(t)

)
, (1.102)

i
δS

δφcl
out(t)

= −1

2
φcl
out(t) +

1

2
φq
in(t) +

1

2
φq
in(t) +

1

2
φq
out(t) +

√
κ

2

(
ϕcl(t) + ϕq(t)

)
, (1.103)

i
δS

δφ̄q
out(t)

= −3

2
φq
out(t)−

1

2
φcl
out(t) +

1

2
φcl
in(t) +

1

2
φq
in(t) +

√
κ

2

(
ϕcl(t) + ϕq(t)

)
. (1.104)

Setting these equations to zero and combining them we find,

φcl
out(t) = φcl

in(t) +
√
κϕcl(t),

φq
out(t) = φq

in(t) +
√
κϕq(t) = 0.

(1.105)

(1.106)

These equations are the analogue of the input-output relations from the standard input-output
theory,

b̂out(t) = b̂in(t)+
√
κâ(t). (1.107)

The fact that the quantum part of the field is zero here is a consequence of the stationary phase
approximation. A stationary phase means that we take the classical trajectory and no coherences
are built up.

1.4.5 Statistics of the Input Field

We now turn to deriving the statistics of the input field from our generating functional Z. This
in itself will not lead to information about the system but will serve as a way of introducing
the methods with which we will gain access to the statistics of the output field later on. After
integrating out φout and ϕ the action reduces to the part dependend only on the input bath
modes defined in Eq. (1.90), Si

B [φin]. This can heuristically be derived as follows; the path
integral is always normalized to one, even for a non-Hermitian Hamiltonian, and Si

V [ϕ, φin] looks
like the system action from a non-Hermitian Hamiltonian,

Ĥ = −i
√
κ
(
φ+
in(t)â

† − φ̄−
in(t)â

)
,

hence integrating out ϕ in the terms Si
V [ϕ, φin] and Si

S [ϕ] results in a factor one. The integral
cannot be explicitly solved using the formula for the Gaussian integral since the system Hamil-
tonian HS is unspecified at this point.
As it is customary in equilibrium quantum field theory, to access physical expectation values
we introduce source fields into the expression of the partition function. These source fields are
entered in such a way that functional derivatives of the partition function with respect to the
source fields then generate the expectation values of the fields in question [1, 10]. In order to get
access to the statistics of the input field, we introduce the moment generating functional,

Λin[χ, χ
′] =

∫
D[φin]e

iSi
B [φin]−i

∫ tN
t0

dt[χ(t)φ+
in(t)+χ′(t)φ̄−

in(t)], (1.108)

where we entered the field of the output and its hermitian conjugate on the forward and backward
time branch respectively so that they generate time–ordered and normal–ordered expectation
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values. This functional generates the moments of the input field,(∏
l

i
δ

δχ(tl)

)(∏
p

i
δ

δχ′(tp)

)
Λin[χ, χ

′]

∣∣∣∣∣
χ=χ′=0

=

〈[∏
p

b̂†in(tp)

][∏
l

b̂in(tl)

]〉
. (1.109)

An equivalent way to access the statistics of the input field is through the cumulant generating
functional S,

Sin[χ, χ
′] = log (Λin[χ, χ

′]). (1.110)

This functional is defined as the logarithm of the moment generating functional Λ and as its
name states, generating the cumulants of the field it describes,(∏

l

i
δ

δχ(tl)

)(∏
p

i
δ

δχ′(tp)

)
Sin[χ, χ

′]

∣∣∣∣∣
χ=χ′=0

=

〈〈[∏
p

b̂†in(tp)

][∏
l

b̂in(tl)

]〉〉
. (1.111)

We will stick to the moment generating functional in the following but we want to stress that
these two functionals are on equal fotting with respect to the task of determining the statistics
of the output field since the cumulants can be determined from the moments and vice versa. To
perfom the integration over φin we again employ the formula for the multidimensional Gaussian
integral. The discrete result can be found in the appendix, see A.2.5, in the continuum limit we
find,

Λin[χ, χ
′] = e−

∫ tN
t0

dt[iχ(t)f(t)+iχ′(t)f̄(t)+χ(t)χ′(t)nB]. (1.112)

This produces the following moments,

⟨b̂in(t)⟩ = i
δ

δχ(t)
Λ[χ′, χ]

∣∣∣∣
χ=χ′=0

= f(t), (1.113)

⟨b̂†in(t)⟩ = f̄(t), (1.114)

⟨b̂†in(t)b̂in(t
′)⟩ = f̄(t)f(t′) + nBδ(t− t′). (1.115)

The delta distributions appearing here are a consequence of the Markov approximation we made
when considering the system–bath interaction.

g(2)-function

We define the g2–function for different times,

g
(2)
in (t1, t2, t3, t4, t5, t6) =

⟨b̂
†
in(t1) b̂

†
in(t2) b̂in(t3) b̂in(t4)⟩

⟨b̂
†
in(t5) b̂in(t6)⟩2

, ti ∈ [t0, tN ]∀i, (1.116)

which for the specific choice of,

t1 → t, t2 → t+ τ, t3 → t+ τ, t4 → t, t5 → t, t6 → t, (1.117)
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reduces to the usual g(2)(t, τ)-function. For the input field we get the following results for the
constituents of the g2–function

⟨b̂
†
in(t1) b̂

†
in(t2) b̂in(t3) b̂in(t4)⟩ = f̄(t1)f̄(t2)f(t3)f(t4)

+ nB

[
f̄(t1)δ(t2 − t3)f(t4) + f̄(t1)δ(t2 − t4)f(t3)

+f̄(t2)δ(t1 − t3)f(t4) + f̄(t2)δ(t1 − t4)f(t3)
]

+ n2
B [δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)],

(1.118)

⟨b̂
†
in(t5) b̂in(t6)⟩2 =

(
f̄(t5)f(t6) + nBδ(t5 − t6)

)2
. (1.119)

P-functional

The P-function, sometimes referred to as the Glauber–Sudarshan P representation, is a well-
known tool from quantum optics used to write down the phase space distribution of a quantum
system. It is one of many formally equivalent quasi–probability distributions that describe light
in the phase space formulation of quantum optics and can be generalized to multiple times in form
of the P-functional [8, 9]. We can obtain the P-functional of the output field in our treatment
by Fourier transforming the generating functional Λ,

Pin[α] =

∫
D[χ]ei

∫ tN
t0

dt[χ̄(t)α(t)+ᾱ(t)χ(t)]Λin[χ̄, χ]

=

∫
D[χ]ei

∫ tN
t0

dt[χ̄(t)α(t)+ᾱ(t)χ(t)−χ̄(t)f(t)−χ(t)f̄(t)+i|χ(t)|2nB] (1.120)

=
1

nN
B

exp

{∫ tN

t0

dt
|α(t)− f(t)|2

nB

}
.

Where we employed the formula for the Gaussian integral in the last step. Note that the argument
α here has nothing to do with the coherent input states. With the differential elements given as
follows,

D[χ] =

N−1∏
j=0

δtd[χ(t)], D[α] =

N−1∏
j=0

δtd[α(t)], (1.121)

the P-functional is normalized to 1.

1.4.6 Statistics of the Output Field

Similarly to the previous subsection, we want to gain access to the statistics of the output
field and to that end introduce a generating functional. The discrete version of the generating
functional of the output field and its derivation can be found in the appendix, see A.2.6, here we
focus on the continuous limit,

Λout[χ, χ
′] =

∫
D[ϕ, φin, φout]e

iSio[ϕ,φin,φout]−i
∫ tN
t0

dt[χ(t)φ+
out(t)+χ′(t)φ̄−

out(t)]. (1.122)

This generating functional again generates the following normal and time–ordered moments,(∏
l

i
δ

δχ(tl)

)(∏
p

i
δ

δχ′(tp)

)
Λout[χ, χ

′]

∣∣∣∣∣
χ=χ′=0

=

〈[∏
p

b̂†out(tp)

][∏
l

b̂out(tl)

]〉
. (1.123)
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With this we can evaluate the different moments of the output field and its hermitian conjugate
as well as other common statistical quantities such as the g(1) or g(2) functions.

We integrate out the output bath modes using the multidimensional Gaussian integral. In
the exponent we find,

iS = iSio
S [ϕ]−

∫ tN

t0

dt
(
φ̄+
in(t) φ̄

+
out(t) φ̄

−
out(t) φ̄

−
in(t)

)
1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1




φ+
in(t)

φ+
out(t)

φ−
out(t)
φ−
in(t)


−
√
κ

∫ tN

t0

dt
[
ϕ̄+(t)φ+

in − φ̄+
out(t)ϕ

+(t)− ϕ̄−(t)φ−
out(t) + φ̄−

in(t)ϕ
−(t)

]
(1.124)

− i

∫ tN

t0

dt
[
χ(t)φ+

out(t) + χ′(t)φ̄−
out(t)

]
.

Evaluating the path integral over the output modes leads to the following action,

S[ϕ, φin, χ, χ
′] = Si[ϕ, φin]−

∫ tN

t0

dt
[
χ(t)

(
φ+
in(t) +

√
κϕ+(t)

)
− χ′(t)

(
φ̄−
in(t) +

√
κϕ̄−(t)

)]
.

(1.125)

Integrating out the input fields as well and using as an input state the displaced thermal state
we get,

S[ϕ, χ, χ′] =S[ϕ]−
∫ tN

t0

dtχ(t)

[
f(t) +

√
κ

2
(2nB + 1)ϕq(t) +

√
κ

2
ϕcl(t)

]
−
∫ tN

t0

dtχ′(t)

[
f̄(t)−

√
κ

2
(2nB + 1)ϕ̄q(t) +

√
κ

2
ϕ̄cl(t)

]
+ i

∫ tN

t0

χ(t)χ′(t)nB .

(1.126)

Here S[ϕ] is known from the section on the reduced action and can be found in Eq. (1.94). This
leaves us with the moment generating function now only being a path integral over the system
modes ϕ,

Λout[χ, χ
′] =

∫
D[ϕ]eiS[ϕ,χ,χ′]. (1.127)

The action here is,

S[ϕ, χ, χ′] =SS [ϕ] + iκ

∫ tN

t0

dt

[
(2nB + 1)ϕ̄q(t)ϕq(t)− 1

2
ϕ̄cl(t)ϕq(t) +

1

2
ϕ̄q(t)ϕcl(t)

]
+ i

√
2κ

∫ tN

t0

dt
[
f(t)ϕ̄q(t)− f̄(t)ϕq(t)

]
−
∫ tN

t0

dtχ(t)

[
f(t) +

√
κ

2
(2nB + 1)ϕq(t) +

√
κ

2
ϕcl(t)

]
−
∫ tN

t0

dtχ′(t)

[
f̄(t)−

√
κ

2
(2nB + 1)ϕ̄q(t) +

√
κ

2
ϕ̄cl(t)

]
+ i

∫ tN

t0

χ(t)χ′(t)nB .

(1.128)

Note that this, with the exception of the input state which we chose to be a displaced thermal
state, is still general and SS [ϕ] is the only system specific term.
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P-functional

We can obtain the P–functional by Fourier transforming the generating functional Λ,

Pout[α] =

∫
D[χ]ei

∫ tN
t0

dt[χ̄(t)α(t)+ᾱ(t)χ(t)]Λout[χ̄, χ] =
1

nN
B

∫
D[ϕ]eiSP [ϕ,α]. (1.129)

With

SP [ϕ, α] = S[ϕ] + i

∫ tN

t0

dt

nB

[
ᾱ(t)− f̄(t) +

√
κ

2
(2nB + 1)ϕ̄q(t)−

√
κ

2
ϕ̄cl(t)

]
[
α(t)− f(t)−

√
κ

2
(2nB + 1)ϕq(t)−

√
κ

2
ϕcl(t)

]
,

(1.130)

and

S[ϕ] = SS [ϕ] + i
√
2κ

∫ tN

t0

dt
(
f(t)ϕ̄q(t)− f̄(t)ϕq(t)

)
+ iκ

∫ tN

t0

dt

[
(2nB + 1)ϕ̄q(t)ϕq(t)− 1

2
ϕ̄cl(t)ϕq(t) +

1

2
ϕ̄q(t)ϕcl(t)

]
.

(1.131)

The discrete version is given as follows,

SP [ϕ, α] = S[ϕ]+i

N−1∑
j=0

δt

nB

[
ᾱj − f̄j +

√
κ

2
(2nB + 1)ϕ̄q

j −
√

κ

2
ϕ̄cl
j

]
[
αj − fj −

√
κ

2
(2nB + 1)ϕq

j −
√

κ

2
ϕcl
j

]
,

(1.132)

with

S[ϕ] = SS [ϕ] +i
κ

2

N−1∑
j=1

δt
[
ϕ̄+
j+1ϕ

+
j−1 + ϕ̄−

j−1ϕ
−
j+1 − 2ϕ̄−

j−1ϕ
+
j+1

]
+δt

√
κ

N−2∑
j=1

[
fj
(
ϕ̄−
j−1 − ϕ̄+

j+1

)
+ f̄j

(
ϕ+
j−1 + ϕ−

j+1

)]
+δtκnB

N−2∑
j=1

(
ϕ̄−
j−1 − ϕ̄+

j+1

)(
ϕ+
j−1 − ϕ−

j+1

)
.

(1.133)
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Chapter 2

Damped Harmonic Oscillator

In this chapter we apply our novel formalism to a simple system which is solvable through the
methods of standard input–output theory as well. This serves as a way to familiarize ourselves
with the formalism and as a proof of concept. The system we consider is that of a single mode
which is coupled to a Markovian bath which results in a damped harmonic oscillator. We will
first solve for the statistics of the input and output field using standard input–output theory and
then show how the same results can be obtained using the Keldysh path integral approach to
input–output theory.

2.1 Damped Harmonic Oscillator with Standard Input-
Output Theory

The Hamiltonian governing our system has the following form,

HS = ωS â
†â, (2.1)

where the system mode â obeys the following commutation relation,[
â, â†

]
= 1. (2.2)

For this specific Hamiltonian the equation of motion of the system mode from Eq. (1.23) is

d

dt
â = iωS

[
â†â, â

]
− κ

2
â−

√
κ b̂in(t) = −iωS â− κ

2
â−

√
κ b̂in(t) = −

(
iωS +

κ

2

)
â−

√
κ b̂in(t) .

(2.3)

Equivalently we find the equation of motion containing the output field,

d

dt
â = −

(
iωS − κ

2

)
â−

√
κ b̂out(t) . (2.4)

We can formally solve these equations to find,

â(t) = e−(iωS+κ
2 )(t−t0)â(t0)−

√
κ

∫ t

t0

dτ e−(iωS+κ
2 )(t−τ)b̂in(τ). (2.5)
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ωS

−π

−π
2

π
2

π

arg
(

⟨b̂out[ω]⟩
⟨b̂in[ω]⟩

)

ω

Figure 2.1: Plot of the phase of the transmission coefficient for fixed κ. The line connecting the
minimal and maximal value of the transmission coefficient in this plot is an artefact.

This represents damped motion for ⟨â⟩ even with no input, ⟨b̂in(t)⟩ = 0, since â oscillates at the
frequency ωS and contains the exponential damping factor e−

κ
2 t. In the limit of no coupling, i.e.

κ → 0, we retrieve the unitary time-evolution,

â(t) = e−iωS(t−t0)â(t0). (2.6)

In the following we reproduce a derivation of the relationship between the input and output fields
given in [5]. We start by Fourier transforming the equations of motion of the system mode to
get,

−iωâ[ω] = −
(
iωS +

κ

2

)
â[ω]−

√
κb̂in[ω], (2.7)

−iωâ[ω] = −
(
iωS − κ

2

)
â[ω]−

√
κb̂out[ω]. (2.8)

For the convention of the Fourier transform in use here, check B.1. Combining these equations
leads to the following relation between the input and the output field,

b̂out[ω] =
2(ωS − ω) + iκ

2(ωS − ω)− iκ
b̂in[ω]. (2.9)

With this we recover the result from [3] and from this expression we can read off the reflection
coefficient,

R[ω] =
⟨b̂out[ω]⟩
⟨b̂in[ω]⟩

,

see Fig. 2.1.
Furthermore we can rearrange Eq. (2.7) to get the following relationship between the input

field and the system mode,

â[ω] =
−
√
κ

κ
2 + i(ωS − ω)

b̂in[ω]. (2.10)
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We now consider the case of resonant driving, i.e. ωS = ω. In this specific case the relations
derived above simplify as follows,

b̂out[ωS ] = −b̂in[ωS ], (2.11)

â[ωS ] = − 2√
κ
b̂in[ωS ] =

2√
κ
b̂out[ωS ]. (2.12)

Displaced Thermal State as Input

So far our treatment was independent of the specific input state. Now we assume that the bath
is initially in a displaced thermal state,

ρ̂B =
⊗
k

(
1− e−βωk

)
D̂(αk)e

−βωk b̂
†
k b̂kD̂†(αk). (2.13)

For this specific scenario we can explicitly compute the moments of the input field,

⟨b̂in(t)⟩ = Tr
{
b̂in(t)ρ̂B

}
=

1

2πρ

∑
k

e−iωk(t−t0)⟨b̂k(t0)⟩

=
1

2πρ

∑
k

e−iωk(t−t0)αk =
∑
k

e−iωk(t−t0)
αk√
Nδt

= f(t), (2.14)

⟨b̂
†
in(t)⟩ = ⟨b̂in(t)⟩ = f̄(t), (2.15)

⟨b̂
†
in(t) b̂in(t

′)⟩ = f̄(t)f(t′) + δ(t− t′)nB , (2.16)

where we assumed, that e−βωk ≈ e−βΩ and then attain the same results that we get from the
Keldysh approach in Eqs. (1.113), (1.115).
We can further compute the moments of the output field by using the input–output relation from
Eq. (1.26),

⟨b̂out(t)⟩ = ⟨b̂in(t)⟩+
√
κe−iωS(t−t0)e

κ/2(t−t0)⟨â(t0)⟩ − κ

∫ t

t0

dτ e−iωS(t−τ)e−
κ/2(t−τ)⟨b̂in(τ)⟩,

(2.17)

which in the limit where the initial time is in the distant past, t0 → −∞, simplifies to the
following,

⟨b̂out(t)⟩ = f(t)− iκ

∫
dt′ f(t′)GR(t− t′), (2.18)

with,

GR(t− t′) = −iθ(t− t′)e−iωS(t−t′)e−
κ/2(t−t′). (2.19)

In the style of the Keldysh formalism we introduced the retarded Green function GR(t− t′) here.
For the hermitian conjugate of the above we will use the advanced Green function GA which is
connected to the retarded Green function in the following way,[

GA(t− t′)
]†

= GR(t′ − t), (2.20)
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note that throughout this thesis, the single Green functions are always considered in the contin-
uum limit and are therefore not matrices. This leads to,

⟨b̂
†
out(t)⟩ = f̄(t) + iκ

∫
dt′ f̄(t′)GA(t′ − t). (2.21)

Further we can compute the output flux,

⟨b̂
†
out(t1) b̂out(t2)⟩ =f̄(t1)f(t2) + δ(t1 − t2)nB

− iκ
(
nB

(
GR(t2 − t1)−GA(t2 − t1)

)
+f̄(t1)

∫
dt′ GR(t2 − t′)f(t′)− f(t2)

∫
dt′ GA(t′ − t1)f̄(t

′)

)
+ κ2

(
−nB

∫
dt′ GA(t′ − t1)G

R(t2 − t′)

+

∫
dt

∫
dt′ f̄(t′)GA(t′ − t1)G

R(t2 − t)f(t)

)
=⟨b̂

†
out(t1)⟩⟨b̂out(t2)⟩+ nBδ(t1 − t2), (2.22)

which in the limit of zero temperature, nB → 0, simplifies to the absolute value squared of the
average output field.

2.2 Damped Harmonic Oscillator with Keldysh Input–Output
Theory

We now turn to the treatment of the damped harmonic oscillator with the Keldysh path integral
approach detailed in Sec. 1.3. The central goal will be to evaluate the moment generating
functional from Eq. (1.127) to get access to the statistics of the output field,

Λout[χ, χ
′] =

∫
D[ϕ, φin, φout]e

iSio[ϕ,φin,φout]−i
∫ tN
t0

dt[χ(t)φ+
out(t)+χ′(t)φ̄−

out(t)]

=

∫
D[ϕ]eiS[ϕ,χ,χ′]. (2.23)

With the system Hamiltonian HS = ωS â
†â, we can evaluate the system specific contribution

SS [ϕ] to the action,

SS [ϕ] =

N−1∑
j=1

δt

[
iϕ̄+

j

ϕ+
j − ϕ+

j−1

δt
− ωSϕ̄

+
j ϕ

+
j−1

]

−
N−1∑
j=1

δt

[
iϕ̄−

j

ϕ−
j − ϕ−

j−1

δt
− ωSϕ̄

−
j ϕ

−
j−1

]
+iϕ̄0ϕ0 − i ln ρS(ϕ̄0, ϕ2N−1).

(2.24)

Neglecting the boundary terms and going to the continuum limit we find,

SS [ϕ] =

∫ tN

t0

dt
[
ϕ̄+(t)(i∂t − ωS)ϕ

+(t)− ϕ̄−(t)(i∂t − ωS)ϕ
−(t)

]
=

∫ tN

t0

dt
[
ϕ̄q(t)(i∂t − ωS)ϕ

cl(t) + ϕ̄cl(t)(i∂t − ωS)ϕ
q(t)

]
. (2.25)
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Inserting this back into the action S[ϕ, χ, χ′] we get,

S[ϕ, χ, χ′] =

∫ tN

t0

dt

(
ϕ̄cl(t)
ϕ̄q(t)

)T(
0 − iκ

2 + (i∂t − ωS)
iκ
2 + (i∂t − ωS) iκ(2nB + 1)

)(
ϕcl(t)
ϕq(t)

)
+

(
−χ(t)

√
κ
2

−if̄(t)
√
2κ− χ(t)

√
κ
2 (2nB + 1)

)T(
ϕcl(t)
ϕq(t)

)
+

(
−χ′(t)

√
κ
2

if(t)
√
2κ+ χ′(t)

√
κ
2 (2nB + 1)

)T(
ϕ̄cl(t)
ϕ̄q(t)

)
− χ(t)f(t)− χ′(t)f̄(t) + inBχ(t)χ

′(t).

(2.26)

We now artificially introduce a second integral over time t′ for the quadratic term in order to
cast the path integral into the general Gaussian form to which we can apply the formula for
multi-dimensional Gaussian integrals from A.2.1,

S[ϕ, χ, χ′] = (2.27)[∫ tN

t0

dt′
∫ tN

t0

dt

(
ϕ̄cl(t)
ϕ̄q(t)

)T(
0

(
− iκ

2 + (i∂t − ωS)
)
δ(t− t′)(

iκ
2 + (i∂t − ωS)

)
δ(t− t′) iκ(2nB + 1)δ(t− t′)

)(
ϕcl(t′)
ϕq(t′)

)]

+

∫ tN

t0

dt

(
−χ(t)

√
κ
2

−if̄(t)
√
2κ− χ(t)

√
κ
2 (2nB + 1)

)T(
ϕcl(t)
ϕq(t)

)
+

(
−χ′(t)

√
κ
2

if(t)
√
2κ+ χ′(t)

√
κ
2 (2nB + 1)

)T(
ϕ̄cl(t)
ϕ̄q(t)

)
− χ(t)f(t)− χ′(t)f̄(t) + iχ(t)χ′(t).

From this expression we read of the inverse Green functions,[
G−1

]A
(t− t′) =

(
− iκ

2
+ (i∂t − ωS)

)
δ(t− t′), (2.28)

[
G−1

]R
(t− t′) =

(
iκ

2
+ (i∂t − ωS)

)
δ(t− t′), (2.29)[

G−1
]K

(t− t′) = iκ(2nB + 1)δ(t− t′). (2.30)

By Fourier transforming and solving for the inverse, we determine the Green functions in the
frequency domain,

GA[ω] =
1

ω − ωS − iκ/2
, (2.31)

GR[ω] =
1

ω − ωS + iκ/2
, (2.32)

GK [ω] = −GR[ω] ·
[
G−1

]K
[ω] ·GA[ω], [G−1]K [ω] = iκ(2nB + 1)). (2.33)

Note that already at this stage we find that the relation of GR[ω] to GA[ω] is the same as the
relation between output and input in the classical input-output theory, see Eq. (2.9),

GR[ω] =
2(ωS − ω) + iκ

2(ωS − ω)− iκ
GA[ω]. (2.34)

The Green functions in the time domain can now be found by a further Fourier transform,

GA(t− t′) = iθ(t′ − t)e−iωS(t−t′)e
κ/2(t−t′), (2.35)

GR(t− t′) = −iθ(t− t′)e−iωS(t−t′)e−
κ/2(t−t′), (2.36)

GK(t− t′) = −iFe−iωS(t−t′)e−
κ/2|t−t′|,
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where we introduced the distribution function F = 2nB + 1. With the Green functions we can
now define G,

G(t− t′) =

(
GK(t− t′) GR(t− t′)
GA(t− t′) 0

)
=

(
−iFe−iωS(t−t′)e−

κ/2|t−t′| −iθ(t− t′)e−iωS(t−t′)e−
κ/2(t−t′)

iθ(t′ − t)e−iωS(t−t′)e
κ/2(t−t′) 0

)
, (2.37)

and with it evaluate the moment generating function,

Λout[χ, χ
′] = eiS[χ,χ′]. (2.38)

If we let our dynamics start in the far past, t0 → −∞, and end in the far future, tN → ∞, we
find,

S[χ, χ′] =

∫
dt

∫
dt′ iκ

(
χ(t)GR(t− t′)f(t′)− f̄(t)GA(t− t′)χ′(t′)

)
−
∫

dt
(
χ(t)f(t) + χ′(t)f̄(t)− iχ(t)χ′(t)nB

)
. (2.39)

From the moment generating functional we now have access to the statistics of the output field.
We start by calculating the first moment of the output field and its hermitian conjugate,

⟨b̂out(t)⟩ = i
δΛout[χ, χ

′]

δχ(t)

∣∣∣∣
χ=χ′=0

= f(t)− iκ

∫
dt′ f(t′)GR(t− t′), (2.40)

⟨b̂†out(t)⟩ = ⟨b̂out(t)⟩ = f̄(t) + iκ

∫
dt′ f̄(t′)GA(t′ − t). (2.41)

Through these averages we can rewrite the exponent of our generating functional in a concise
manner,

Λout[χ, χ
′] = eiS[χ,χ′],

S[χ, χ′] = −
∫

dt
(
χ(t)⟨b̂out(t)⟩+ χ′(t)⟨b̂†out(t)⟩+ inBχ(t)χ

′(t)
)
. (2.42)

From here it is also convenient to compute the cumulant generating functional from Eq. (1.111),

Sout[χ, χ
′] = −i

∫
dt
(
χ(t)⟨b̂out(t)⟩+ χ′(t)⟨b̂†out(t)⟩+ inBχ(t)χ

′(t)
)
. (2.43)

From either of these expressions it is now straightforward to compute further moments of the
output field. We firstly calculate the g(1)–function,

⟨b̂†out(t1)b̂out(t2)⟩ = (i)2
δ2Λ[χ, χ′]

δχ′(t1)δχ(t2)

∣∣∣∣
χ=χ′=0

= f̄(t1)f(t2) + δ(t2 − t1)nB

− iκ

(
f̄(t1)

∫
dt′ GR(t2 − t′)f(t′)− f(t2)

∫
dt′ GA(t′ − t1)f̄(t

′)

)
+ κ2

(∫
dt

∫
dt′ f(t′)f̄(t)GR(t2 − t′)GA(t− t1)

)
,

= ⟨b̂out(t1)⟩⟨b̂out(t2)⟩+ δ(t2 − t1)nB . (2.44)
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Further we calculate the g(2)-function in the same fashion as we did for the input-field,

⟨b̂
†
out(t1) b̂

†
out(t2) b̂out(t3) b̂out(t4)⟩ = (i)4

δΛout[χ, χ
′]

δχ′(t1)δχ′(t2)δχ(t3)δχ(t4)

∣∣∣∣
χ=χ′=0

= ⟨b̂out(t1)⟩⟨b̂out(t2)⟩⟨b̂out(t3)⟩⟨b̂out(t4)⟩

− nB

(
⟨b̂out(t4)⟩⟨b̂out(t2)⟩δ(t3 − t1) + ⟨b̂out(t3)⟩⟨b̂out(t2)⟩δ(t4 − t1)

+⟨b̂out(t4)⟩⟨b̂out(t1)⟩δ(t3 − t2) + ⟨b̂out(t3)⟩⟨b̂out(t1)⟩δ(t4 − t2)
)

+ n2
B(δ(t3 − t2)δ(t4 − t1) + δ(t4 − t2)δ(t3 − t1)). (2.45)

For the special case of no coupling between the bath and our system, κ → 0, we find,

g
(2)
out(t1, t2, . . . , t6) ·

(
f̄(t5)f(t6)

)2
= f̄(t1)f̄(t2)f(t3)f(t4)

+ nB

(
f̄(t1)δ(t3 − t2)f(t4) + f̄(t2)δ(t4 − t1)f(t3)

+f̄(t2)δ(t3 − t1)f(t4) + f̄(t1)δ(t2 − t4)f(t3)
)

+ n2
B(δ(t2 − t4)δ(t3 − t1) + δ(t3 − t2)δ(t4 − t1))

= g
(2)
in (t1, t2, . . . , t6) ·

(
f̄(t5)f(t6)

)2
, (2.46)

as expected from the input-output relation and the g(2)–function of the input field. In the case
of zero temperature, i.e. nB → 0, we get,

g
(2)
out(t1, t2, . . . , t6) =

⟨b̂out(t1)⟩⟨b̂out(t2)⟩⟨b̂out(t3)⟩⟨b̂out(t4)⟩(
⟨b̂out(t5)⟩⟨b̂out(t6)⟩

)2 . (2.47)

P-Functional

In the case of the damped harmonic oscillator it is also possible to evaluate the P–functional
exactly,

Pout[α] =

∫
D[χ]ei

∫ tN
t0

dt[χ̄(t)α(t)+ᾱ(t)χ(t)]Λout[χ̄, χ] =
1

nN
B

eiSP [α], (2.48)

SP [α] = − i

nB

∫
dt

(
−iκ

∫
duGA(u− t)f̄(u)− f̄(t) + ᾱ(t)

)
(
iκ

∫
dv GR(t− v)f(v)− f(t) + α(t)

) (2.49)

= −i

∫
dt

|α(t)− ⟨b̂out(t)⟩|2

nB
. (2.50)

The P-functional here corresponds to the P-functional of a displaced thermal state where the
displacement is given by the average of the output field ⟨b̂out(t)⟩ and it reduces to the P-functional
of the input field in the limit of no coupling, κ → 0,

Pout[α]
κ→0−→ 1

nN
B

e
∫
dt

|α(t)−f(t)|2
nB = Pin[α]. (2.51)

Note that here we also made the same assumptions on the initial and final times as made for
the generating functional above, t0 → −∞, tN → ∞.
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2.2.1 Frequency Space

We now switch to describing the dynamics of our system in the frequency domain. This is
achieved by rewriting the generating functional from Eq. (2.38) such that it generates the mo-
ments of the output field in frequency space and a subsequent derivation of the statistical quanti-
ties in question via functional derivatives as before. We consider the exponent of the generating
functional in Eq. (2.23) where we introduced the source fields in the time-domain,

iSio[ϕ, φin, φout]− i

∫ tN

t0

dt
[
χ(t)φ+

out(t) + χ′(t)φ̄−
out(t)

]
= . . . , (2.52)

and rewrite the fields φ+
out(t), φ̄

−
out(t) using their Fourier transforms, assuming t0 → −∞, tN →

∞,

· · · = iSio[ϕ, φin, φout]−
i

2π

∫ ∞

−∞
dω
(
φ+
out[ω]χ̄[ω] + φ̄−

out[ω]χ
′[ω]
)
. (2.53)

From this expression we can see that functional derivatives with respect to χ̄ will generate the
moments of the output field in frequency space and functional derivatives with respect to χ′

will generate the moments of the hermitian conjugate once the functional has been rewritten
through the Fourier transforms of its constituens. This means in frequency space we replace
Λout[χ, χ

′] → Λout[χ̄, χ
′]. This reformulation leads to

S[χ̄, χ′] = − 1

2π

∫ ∞

−∞
dω iκ

(
f̄ [ω]GA[ω]χ′[ω]− χ̄[ω]GR[ω]f [ω]) + χ̄[ω]f [ω] (2.54)

+χ′[ω]f̄ [ω]− inBχ̄[ω]χ
′[ω]
)
. (2.55)

Similarly to the procedure in the time domain we compute the first moment and its hermitian
conjugate,

δΛout[χ̄, χ
′]

δχ̄[ω]

∣∣∣∣
χ̄=χ′=0

= − i

2π

∫
D[ϕ, φin, φout]φ

+
out[ω]e

Sio[ϕ,φin,φout]

= − i

2π
⟨φ+

out[ω]⟩ = − i

2π
⟨b̂out[ω]⟩, (2.56)

δΛout[χ̄, χ
′]

δχ′[ω]

∣∣∣∣
χ̄=χ′=0

= − i

2π

∫
D[ϕ, φin, φout]φ̄

−
in[ω]e

Sio[ϕ,φin,φout]

= − i

2π
⟨φ̄−

in[ω]⟩ = − i

2π
⟨b̂

†
out[ω]⟩, (2.57)

and use these results to rewrite the exponent of the generating functional from Eq. (2.55),

S[χ̄, χ′] = − 1

2π

∫ ∞

−∞
dω
(
χ̄[ω]⟨b̂out[ω]⟩+ χ′[ω]⟨b̂out[ω]⟩ − inBχ̄[ω]χ

′[ω]
)
. (2.58)

These moments are,

⟨b̂out[ω]⟩ = 2πi · δΛout[χ̄, χ
′]

δχ̄[ω]

∣∣∣∣
χ̄=χ′=0

= f [ω]
(
1− iκGR[ω]

)
, (2.59)

⟨b̂
†
out[ω]⟩ = 2πi · δΛout[χ̄, χ

′]

δχ′[ω]

∣∣∣∣
χ̄=χ′=0

= f̄ [ω]
(
1 + iκGA[ω]

)
. (2.60)
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We again evaluate the g(1)–function,

⟨b̂
†
out[ω1] b̂out[ω2]⟩ = (2πi)

2 · δ2Λout[χ̄, χ
′]

δχ′[ω1]δχ̄[ω2]

∣∣∣∣
χ̄=χ′=0

= ⟨b̂out[ω1]⟩⟨b̂out[ω2]⟩+ 2πnBδ(ω1 − ω2),

(2.61)

and the g(2)–function,

⟨b̂
†
out[ω1] b̂

†
out[ω2] b̂out[ω3] b̂out[ω4]⟩ =

(2πi)
4 δ4Λout[χ̄, χ

′]

δχ′[ω1]δχ′[ω2]δχ̄[ω3]δχ̄[ω4]

∣∣∣∣
χ̄=χ′=0

= ⟨b̂out[ω1]⟩⟨b̂out[ω2]⟩⟨b̂out[ω3]⟩⟨b̂out[ω4]⟩

+ (2π)2nB

(
δ(ω1 − ω2)⟨b̂out[ω4]⟩⟨b̂out[ω2]⟩+ δ(ω1 − ω4)⟨b̂out[ω3]⟩⟨b̂out[ω2]⟩

+ δ(ω3 − ω2)⟨b̂out[ω4]⟩⟨b̂out[ω1]⟩+ δ(ω4 − ω2)⟨b̂out[ω3]⟩⟨b̂out[ω1]⟩
)

+ (2π)4nB(δ(ω4 − ω2)δ(ω3 − ω1) + δ(ω3 − ω2)δ(ω4 − ω1)). (2.62)

In the limit of no coupling, κ → 0, we get the following expression,

g
(2)
out[ω1, ω2, . . . , ω6]

κ→0−→
(
f̄ [ω1]f̄ [ω2]f [ω3]f [ω4] (2.63)

+ 2πnB

(
δ(ω4 − ω1)f [ω3]f̄ [ω2] + δ(ω3 − ω1)f [ω4]f̄ [ω2]

+ δ(ω2 − ω4)f [ω3]f̄ [ω1] + δ(ω3 − ω2)f [ω4]f̄ [ω1]
)

+ 4π2n2
B (δ(ω2 − ω4)δ(ω3 − ω1) + δ(ω3 − ω2)δ(ω4 − ω1))) /

(
f̄ [ω5]f [ω6] + 2πnBδ(ω6 − ω5)

)
.

In the limit of zero temperature, nB → 0, the expression again factorizes,

g
(2)
out[ω1, ω2, . . . , ω6]

nB→0−→ ⟨b̂out[ω1]⟩⟨b̂out[ω2]⟩⟨b̂out[ω3]⟩⟨b̂out[ω4]⟩(
⟨b̂out[ω5]⟩⟨b̂out[ω6]⟩

)2 . (2.64)

2.2.2 Coherent Input

So far our treatment has been independent of the input encoded by the function f . In the last
two sections of this chapter we will consider specific input states and evaluate the moments of
the output field for those. We start by considering a coherent input state described through the
following function as introduced in discrete fashion in Eq. (1.80),

f(t) = Ae−iωLt, f [ω] = 2πAδ(ω − ωL). (2.65)

We find the reflection coefficient already derived in Sec. 2.1 for the frequency domain,

⟨b̂out(t)⟩ = ⟨b̂in(t)⟩ ·
2(ωL − ωS)− iκ

2(ωL − ωS) + iκ
= ⟨b̂in(t)⟩ ·R[ωL], (2.66)

and that for this specific signal, the output flux exactly matches the input flux, also in accordance
with our previous results from Sec. 2.1,

⟨b̂
†
in(t) b̂in(t)⟩ = ⟨b̂

†
out(t) b̂out(t)⟩ = |A|2 + nBδ(0). (2.67)
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The Dirac delta distribution appearing here is an artefact of the Markov approximation. Treating
the input as white noise results in the same noise being present in the output, these divergences
will vanish however for a detector with a finite bandwidth. We can further evaluate the g(2)–
function which, as expected of a coherent signal, reduces to 1 in the limit of zero temperature,

⟨b̂
†
in(t) b̂

†
in(t+ τ) b̂in(t+ τ) b̂in(t)⟩ = ⟨b̂

†
out(t) b̂

†
out(t+ τ) b̂out(t+ τ) b̂out(t)⟩ = |A|4, (2.68)

g
(2)
in (t, τ) = g

(2)
out(τ) = 1. (2.69)

On resonance, ωL = ωS , we further find that the reflection coefficent is equal to −1 and hence
we retrieve ⟨b̂in(t)⟩ = −⟨b̂out(t)⟩ as derived in Eq. (2.12).

2.2.3 Gaussian Input

We now turn to the input being a Gaussian pulse centered around the frequency ωP in frequency
space and around the time µ in the time domain described by the following function,

f(t) =
1

σ
√
2π

e−iωP te−
1
2

(t−µ)2

σ2 , f [ω] = eiµ(ω−ωP )e−
(ω−ωP )2σ2

2 . (2.70)

We find the following expression for the average output field,

⟨b̂out(t)⟩ = ⟨b̂in(t)⟩ ·

(
1− κσ

√
π

2
e
(2(µ−t)+σ2(κ+2i(ωS−ωP )))

2

8σ2 erf

(
2(µ− t)σ2(κ+ 2i(ωS − ωP ))√

8σ

))
,

(2.71)

which in the resonant case, i.e. ωP = ωS meaning the Gaussian Pulse being centered around the
system frequency, simplifies to,

⟨b̂out(t)⟩ = ⟨b̂in(t)⟩ ·

(
1− κσ

√
π

2
e
(2(µ−t)+σ2κ)

2

8σ2 erf

(
2(µ− t)σ2κ√

8σ

))
. (2.72)

We can further evaluate the output flux in the resonant case,

⟨b̂
†
out(t) b̂out(t)⟩ = ⟨b̂

†
in(t) b̂in(t)⟩

+
κ

4
√
πσ

e
κ2σ2

8 +κµ
2 − t2+µ2

2σ2 −tκerf

(
t(µ− t) + κσ2

√
8σ

)
(
e

4t2+(2µ+κσ2)
2

8σ2
√
πκσerf

(
2(µ− t) + κσ2

√
8σ

)
−
√
8e

tκ
2 + tµ

σ2

)
. (2.73)

In this limit the output flux factorizes into the average of the output field and its hermitian

conjugate, ⟨b̂
†
out(t) b̂out(t)⟩ = |⟨b̂out(t)⟩|2, and hence vanishes at times t∗ where the answer of the

cavity negatively matches the input,

f(t∗) = iκ

∫
dt′ f(t′)GR(t∗ − t′). (2.74)

See Fig. 2.2 for a specific example where the output flux shows destructive interference with the
input signal. The interplay between light entering the cavity and light exiting the cavity leading
to this effect here is a general feature of input–output theory with time dependent drives and
can lead to non-trivial results.
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Figure 2.2: Input (red) and output (blue) flux in units of the coupling constant κ for a Gaussian
pulse impinging on a cavity with a single mode. The input and output fluxes specify the number
of photons arriving per unit time at time t and are thus denoted by an intensity I. At t∗ from
Eq. (2.74) destructive interference happens due to the impinging light pulse negatively matching
the answer of the cavity.
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Chapter 3

Kerr Oscillator

In this chapter we turn to a system exhibiting a non-linearity in its Hamiltonian which will let
us showcase how perturbation theory comes naturally into the Keldysh formalism for input–
output theory. We will consider the Kerr oscillator, which is a well-studied system exhibiting
non–linearities where analytical solutions exist [2, 11].

The Kerr oscillator is described by the following Hamiltonian,

Ĥ = ωS â
†â+Kâ†â†ââ. (3.1)

Obviously, the zeroth–order perturbation in the Kerr parameter K will yield the results already
derived in the previous chapter for the damped harmonic oscillator (DHO). Plugging this Hamil-
tonian into our system–specific part of the action yields the following,

SS [ϕ] =

N−1∑
j=1

δt

[
iϕ̄+

j

ϕ+
j − ϕ+

j−1

δt
− ωSϕ̄

+
j ϕ

+
j−1

]
−

N−1∑
j=1

δt

[
iϕ̄−

j

ϕ−
j − ϕ−

j−1

δt
− ωSϕ̄

−
j−1ϕ

−
j

]

+ iϕ̄0ϕ0 − i ln ρS(ϕ̄0, ϕ2N−1) +

N−1∑
j=1

δtK
((

ϕ̄−
j−1ϕ

−
j

)2 − (ϕ̄+
j ϕ

+
j−1

)2)
. (3.2)

In the continuum limit this expression becomes,

SS [ϕ] =

∫ tN

t0

dt[ϕ̄+(t)(i∂t − ωS)ϕ
+(t)− ϕ̄−(t)(i∂t − ωS)ϕ

−(t)

+K
((

ϕ̄−(t)ϕ−(t)
)2 − (ϕ̄+(t)ϕ+(t)

)2)
]

(3.3)

=

∫ tN

t0

dt[ϕ̄q(t)(i∂t − ωS)ϕ
cl(t) + ϕ̄cl(t)(i∂t − ωS)ϕ

q(t)

−K
(
ϕ̄clϕ̄qϕclϕcl + ϕ̄clϕ̄qϕqϕq + h.c.

)
].

(3.4)

Where we again introduced the Keldysh rotation in the last step. The complete action before
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integrating out the system modes therefore takes the following form,

S[ϕ, χ, χ′] =

[∫ tN

t0

dt′
∫ tN

t0

dt(
ϕ̄cl(t)
ϕ̄q(t)

)T(
0

(
− iκ

2 + (i∂t − ωS)
)
δ(t− t′)(

iκ
2 + (i∂t − ωS)

)
δ(t− t′) iκ(2nB + 1)δ(t− t′)

)(
ϕcl(t′)
ϕq(t′)

)]

+

∫ tN

t0

dt

(
−χ(t)

√
κ
2

−if̄(t)
√
2κ− χ(t)

√
κ
2 (2nB + 1)

)T(
ϕcl(t)
ϕq(t)

)
+

(
−χ′(t)

√
κ
2

if(t)
√
2κ+ χ′(t)

√
κ
2 (2nB + 1)

)T(
ϕ̄cl(t)
ϕ̄q(t)

)
− χ(t)f(t)− χ′(t)f̄(t) + inBχ(t)χ

′(t)

−K
(
ϕ̄clϕ̄qϕclϕcl + ϕ̄clϕ̄qϕqϕq + h.c.

)
= SDHO[ϕ, χ, χ

′] +K

∫ tN

t0

dt
((

ϕ̄−(t)ϕ−(t)
)2 − (ϕ̄+(t)ϕ+(t)

)2)
= SDHO[ϕ, χ, χ

′] + Sint[ϕ]. (3.5)

In the last step we wrote the action as a sum of the damped harmonic oscillator action and the
additional part stemming from the Kerr term in the Hamiltonian which we call the interacting
(int) part borrowing from standard quantum field theory.

3.1 Generating Functional

Now we turn to evaluating the generating functional which we will do perturbatively by expanding
the exponential containing the interaction in the Kerr parameter K to first order,

Λout[χ, χ
′] =

∫
D[ϕ]eiSDHO[ϕ,χ,χ′]eiSint[ϕ] =

∫
D[ϕ]eiSDHO[ϕ,χ,χ′](1− iSint[ϕ] +O(K2)

)
= Λout[χ, χ

′]DHO (3.6)

− iKΛout[χ, χ
′]DHO

∫
dt
(
⟨
(
ϕ̄−(t)ϕ−(t)

)2⟩[χ, χ′]− ⟨
(
ϕ̄+(t)ϕ+(t)

)2⟩[χ, χ′]
)
+O(K2).

The first term here is the generating functional already known from the damped harmonic os-
cillator and the second term consists of averages over the expressions in the interaction part.
These are however not actual expectation values in that they still contain the source fields χ and
χ′. We use this notation here to simply mean the normalized average values before setting the
source fields to zero,

⟨f(ϕ+, ϕ−)⟩[χ, χ′] = (Λout[χ, χ
′]DHO)

−1
∫

D[ϕ]f(ϕ+, ϕ−)eiSDHO[ϕ,χ,χ′]. (3.7)

We now turn to calculating these expectation values in the expansion. In order to do this
we introduce new source fields for classical and quantum field and their hermitian conjugates,
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ϕcl, ϕq, ϕ̄cl, ϕ̄q, in the action of the damped harmonic oscillator,

S[ϕ, χ, . . . ] =[∫ tN

t0

dt′
∫ tN

t0

dt

(
ϕ̄cl(t)
ϕ̄q(t)

)T(
0

(
− iκ

2 + (i∂t − ωS)
)
δ(t− t′)(

iκ
2 + (i∂t − ωS)

)
δ(t− t′) iκ(2nB + 1)δ(t− t′)

)(
ϕcl(t′)
ϕq(t′)

)]

+

∫ tN

t0

dt

(
−χ(t)

√
κ
2 − χcl(t)

−if̄(t)
√
2κ− χ(t)

√
κ
2 (2nB + 1)− χq(t)

)T(
ϕcl(t)
ϕq(t)

)
+

(
−χ′(t)

√
κ
2 − χ′cl(t)

if(t)
√
2κ+ χ′(t)

√
κ
2 (2nB + 1)− χ′q(t)

)T(
ϕ̄cl(t)
ϕ̄q(t)

)
− χ(t)f(t)− χ′(t)f̄(t) + iχ(t)χ′(t). (3.8)

After integrating out the system fields we arrive at the functional Γ,

Γ[χ, χ′, χcl, χq, χ′cl, χ′q] = exp
{
iS[χ, χ′, χcl, χq, χ′cl, χ′q]

}
, (3.9)

from which we get the expectation values of the different fields through functional derivatives of
the following form,

⟨ϕ̄cl(t)⟩[χ, χ′] = (Λout[χ, χ
′]DHO)

−1
i

δΓ

δχ′cl(t)

∣∣∣∣
χcl=χq=χ′cl=χ′q=0

= (Λout[χ, χ
′]DHO)

−1
∫

D[ϕ]ϕ̄cl(t)eiSDHO[ϕ,χ,χ′]. (3.10)

The action can now again be split up into the action of the damped harmonic oscillator and an
additional part,

S = SDHO[χ, χ
′]−

∫
dt

[(
χcl(t)
χq(t)

)T(⟨ϕcl(t)⟩
⟨ϕq(t)⟩

)
+

(
χ′cl(t)
χ′q(t)

)T(⟨ϕ̄cl(t)⟩
⟨ϕ̄q(t)⟩

)

+

∫
dt′
(
χcl(t)
χq(t)

)T(
GK(t− t′) GR(t− t′)
GA(t− t′) 0

)(
χ′cl(t′)
χ′q(t′)

)]
(3.11)

= SDHO[χ, χ
′]

−
∫

dt

[
χ⃗(t)T

(
⟨ϕcl(t)⟩
⟨ϕq(t)⟩

)
+ χ⃗′(t)T

(
⟨ϕ̄cl(t)⟩
⟨ϕ̄q(t)⟩

)
+

∫
dt′ χ⃗(t)TG(t− t′)χ⃗′(t′)

]
,

with,

⟨ϕcl(t)⟩[χ′] =

∫
dt′
[√

κ

2

(
GK(t− t′)χ′(t′)−GR(t− t′)χ′(t′)F

)
− i

√
2κGR(t− t′)f(t′)

]
, (3.12)

⟨ϕ̄cl(t)⟩[χ] =
∫

dt′
[√

κ

2

(
GK(t′ − t)χ(t′) +GA(t′ − t)χ(t′)F

)
+ i

√
2κGA(t′ − t)f̄(t′)

]
, (3.13)

⟨ϕq(t)⟩[χ′] =

∫
dt′
√

κ

2
GA(t− t′)χ′(t′), (3.14)

⟨ϕ̄q(t)⟩[χ] =
∫

dt′
√

κ

2
GR(t′ − t)χ(t′). (3.15)
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From here we can calculate ⟨ϕ±(t)⟩ by using the definition of the Keldysh rotation,

⟨ϕ+(t)⟩[χ′] =
1√
2

(
⟨ϕcl(t)⟩[χ′] + ⟨ϕq(t)⟩[χ′]

)
= −

∫
dt′

√
κ

[
F − 1

2
GA(t− t′)χ′(t′) + iGR(t− t′)f(t′)

]
, (3.16)

⟨ϕ−(t)⟩[χ′] =
1√
2

(
⟨ϕcl(t)⟩[χ′]− ⟨ϕq(t)⟩[χ′]

)
= −

∫
dt′

√
κ

[
F + 1

2
GA(t− t′)χ′(t′) + iGR(t− t′)f(t′)

]
, (3.17)

⟨ϕ̄+(t)⟩[χ] = 1√
2

(
⟨ϕ̄cl(t)⟩[χ] + ⟨ϕ̄q(t)⟩[χ]

)
=

∫
dt′

√
κ

[
F + 1

2
GR(t′ − t)χ(t′) + iGA(t′ − t)f̄(t′)

]
, (3.18)

⟨ϕ̄−(t)⟩[χ] = 1√
2

(
⟨ϕ̄cl(t)⟩[χ]− ⟨ϕ̄q(t)⟩[χ]

)
=

∫
dt′

√
κ

[
F − 1

2
GR(t′ − t)χ(t′) + iGA(t′ − t)f̄(t′)

]
. (3.19)

Where we made the following and similar simplifications,

GK(t− t′) +GA(t− t′)−GR(t− t′)F

= GK(t− t′) + FGA(t− t′)−GR(t− t′)F︸ ︷︷ ︸
=0

+GA(t− t′)−GA(t− t′)F = 2(F − 1)GA(t− t′).

(3.20)

We are eventually interested in the terms ⟨
(
ϕ̄±ϕ±)2⟩[χ, χ′] that arise after expanding the inter-

action term containing the Kerr parameter. To this end we introduce the shifted fields,

δϕ± = ϕ± − ⟨ϕ±⟩[χ, χ′], (3.21)

which fulfill,

⟨δϕ±⟩ = (Λout[χ, χ
′])

−1
(∫

D[χ]ϕ±eiSDHO[ϕ,χ,χ′] − Λout[χ, χ
′]DHO⟨ϕ±⟩[χ, χ′]

)
= 0. (3.22)

We firstly evaluate ⟨
(
δϕ̄±δϕ±)2⟩ by using Wicks Theorem,

⟨
(
δϕ̄±δϕ±)2⟩ = 2⟨δϕ̄±δϕ±⟩2. (3.23)

The expressions for ⟨δϕ̄±ϕ±⟩ can be taken from [7] since this is now purely quadratic in the
system fields and the source fields only enter in the linear terms of the action,

⟨δϕ̄+(t′)δϕ+(t)⟩ = θ(t− t′)iG>(t, t′) + θ(t′ − t)iG<(t, t′), (3.24)

⟨δϕ̄−(t′)δϕ−(t)⟩ = θ(t′ − t)iG>(t, t′) + θ(t− t′)iG<(t, t′). (3.25)

In order to evaluate ⟨δϕ̄±(t)δϕ±(t)⟩ we have to revert back to the discrete notation to de-
termine the time ordering. Because even though in the continuum notation it seems as if these

38



two fields are evaluated at the same time, looking back at the discrete notation in Eq. (3.2)
however, we see that one is actually evaluated before the other. In keeping with the continuum
notation from Eqs. (3.25)&(3.24) we find that t′ > t on the forward time branch and t′ < t on
the backwards time branch. Therefore,

⟨δϕ̄+(t′)δϕ+(t)⟩ = iG<(t, t′) → nB , (3.26)

⟨δϕ̄−(t′)δϕ−(t)⟩ = iG<(t, t′) → nB . (3.27)

On the other hand we can write out ⟨
(
δϕ̄±δϕ±)2⟩ by plugging in the definition of δϕ± and

thereby get an expression for ⟨
(
ϕ̄±ϕ±)2⟩[χ, χ′],

⟨
(
ϕ̄±ϕ±)2⟩[χ, χ′] = ⟨

((
δϕ̄± + ⟨ϕ̄±⟩[χ, χ′]

)(
δϕ± + ⟨ϕ±⟩[χ, χ′]

))2⟩. (3.28)

Using Wicks Theorem and the fact that ⟨δϕ±⟩ = ⟨δϕ±δϕ±⟩ = 0, we get,

⟨
(
ϕ̄±ϕ±)2⟩ = 2⟨δϕ±δϕ±⟩2 + ⟨δϕ̄±δϕ±⟩⟨ϕ̄±⟩⟨ϕ±⟩+ ⟨δϕ̄±δϕ±⟩⟨ϕ±⟩⟨ϕ̄±⟩

+ ⟨δϕ̄±δϕ±⟩⟨ϕ̄±⟩⟨ϕ±⟩+ ⟨ϕ̄±⟩2⟨ϕ±⟩2. (3.29)

Here we suppressed the dependence on χ and χ′ for notational ease. With this we find,

⟨
(
ϕ̄±ϕ±)2⟩[χ, χ′] = 2n2

B + 3nB⟨ϕ̄±⟩[χ, χ′]⟨ϕ±⟩[χ, χ′] + ⟨ϕ̄±⟩2[χ, χ′]⟨ϕ±⟩2[χ, χ′], (3.30)

and can now express the generating functional for the Kerr oscillator to first order in K through
the Green functions,

Λout[χ, χ
′] =Λout[χ, χ

′]DHO

− iKΛout[χ, χ
′]DHO

∫
dt
[
3nB

(
⟨ϕ̄−⟩[χ, χ′]⟨ϕ−⟩[χ, χ′]− ⟨ϕ̄+⟩[χ, χ′]⟨ϕ+⟩[χ, χ′]

)
)

+⟨ϕ̄−⟩2[χ, χ′]⟨ϕ−⟩2[χ, χ′]− ⟨ϕ̄+⟩2[χ, χ′]⟨ϕ+⟩2[χ, χ′]]
]
+O(K2). (3.31)

From the generating functional, we can derive the cumulant generating functional by taking the
logarithm. For this we first rewrite the generating functional as follows,

Λout[χ, χ
′] = Λout[χ, χ

′]DHO

− iKΛout[χ, χ
′]DHO

∫
dt
(
⟨
(
ϕ̄−(t)ϕ−(t)

)2⟩[χ, χ′]− ⟨
(
ϕ̄+(t)ϕ+(t)

)2⟩[χ, χ′]
)
+O(K2)

= Λout[χ, χ
′]DHO

(
1− iK

∫
dt
(
⟨
(
ϕ̄−(t)ϕ−(t)

)2⟩[χ, χ′]− ⟨
(
ϕ̄+(t)ϕ+(t)

)2⟩[χ, χ′]
))

+O(K2)

= Λout[χ, χ
′]DHOe

−iK
∫
dt

(
⟨(ϕ̄−(t)ϕ−(t))

2⟩[χ,χ′]−⟨(ϕ̄+(t)ϕ+(t))
2⟩[χ,χ′]

)
+O(K2). (3.32)

Now taking the logarithm is straighforward and results in the cumulant generating functional of
the output field,

S[χ, χ′]Kerr =S[χ, χ′]DHO − iK

∫
dt
[
3nB

(
⟨ϕ̄−⟩[χ]⟨ϕ−⟩[χ′]− ⟨ϕ̄+⟩[χ]⟨ϕ+⟩[χ′]

)
)

+⟨ϕ̄−⟩2[χ]⟨ϕ−⟩2[χ′]− ⟨ϕ̄+⟩2[χ]⟨ϕ+⟩2[χ′]]
]
+O(K2). (3.33)

From either the generating functional or the cumulant generating functional we can now derive
the moments or cumulants of the output field to first order in the Kerr parameter K.
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3.2 Statistics of the Output Field

We start by computing the expectation value of the output field for the Kerr oscillator to first
order in K through the generating functional from the previous subsection,

⟨b̂out(u)⟩Kerr = ⟨b̂out(u)⟩DHO

+ iK

∫
dtGR(u− t)

(
3nBκ

∫
dt1G

R(t− t1)f(t1)

+2κ2

∫∫∫
dt3dt4dt5G

R(t− t3)f(t3)G
R(t− t4)f(t4)G

A(t5 − t)f̄(t5)

)
+O(K2). (3.34)

For details on the calculation see B.2.1. For zero temperature (i.e. nB = 0) this reduces to,

⟨b̂out(u)⟩Kerr =⟨b̂out(u)⟩DHO

+2iKκ2

∫∫∫∫
dtdt3dt4dt5G

R(u− t)GR(t− t3)f(t3)

GR(t− t4)f(t4)G
A(t5 − t)f̄(t5) +O(K2),

(3.35)

and for K → 0 we retrieve the expected average value of the damped harmonic oscillator.
From the cumulant generating functional we can compute the first moment again, this time
however with much less work,

⟨b̂out(u)⟩Kerr = i
δS[χ, χ′]Kerr

δχ(u)

∣∣∣∣
χ=χ′=0

= ⟨b̂out(u)⟩DHO

+ iK

∫
dtGR(u− t)

(
3nBκ

∫
dt1G

R(t− t1)f(t1)

+2κ2

∫∫∫
dt3dt4dt5G

R(t− t3)f(t3)G
R(t− t4)f(t4)G

A(t5 − t)f̄(t5)

)
+O(K2). (3.36)

Similarly we can compute the expectation value of the hermitian conjugate of the output field,

⟨b̂
†
out(u)⟩Kerr = i

δS[χ, χ′]Kerr

δχ′(u)

∣∣∣∣
χ=χ′=0

= ⟨b̂
†
out(u)⟩DHO

− iK

∫
dtGA(t− u)

(
3nBκ

∫
dt1G

A(t1 − t)f̄(t1)

+2κ2

∫∫∫
dt2dt3dt4G

A(t2 − t)f̄(t2)G
A(t3 − t)f̄(t3)G

R(t4 − t)f(t4)

)
+O(K2), (3.37)

which is exactly the complex conjugate of ⟨b̂out(u)⟩Kerr. We turn to second order cumulants,

⟨⟨b̂
†
out(u) b̂out(w)⟩⟩ = (i)2

δS[χ, χ′]

δχ′(u)δχ(w)

∣∣∣∣
χ=χ′=0

= ⟨b̂
†
out(u) b̂out(w)⟩ − ⟨b̂

†
out(u)⟩⟨b̂out(w)⟩. (3.38)

For the Kerr oscillator we find that these cumulants match those from the damped harmonic
oscillator to first order in K,

⟨⟨b̂
†
out(u) b̂out(w)⟩⟩Kerr = ⟨⟨b̂

†
out(u) b̂out(w)⟩⟩DHO +O(K2), (3.39)
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which leads to the output flux taking the following form,

⟨b̂
†
out(u) b̂out(w)⟩Kerr = ⟨⟨b̂

†
out(u) b̂out(w)⟩⟩DHO + ⟨b̂

†
out(u)⟩Kerr⟨b̂out(w)⟩Kerr +O(K2) (3.40)

= nBδ(u− w) + ⟨b̂
†
out(u)⟩Kerr⟨b̂out(w)⟩Kerr +O(K2). (3.41)

From the expression of the cumulant generating functional in Eq. (3.33) it is evident that all
cumulants of higher order than four must vanish. The remaining non–zero cumulants are thus
the following,

⟨⟨b̂
†
out(u1) b̂

†
out(u2) b̂out(u3)⟩⟩Kerr =

iKκ2
(
2 + 6F 2

) ∫∫
dtdt′GR(u1 − t)GA(t− u2)G

A(t− u3)G
A(t′ − t)f̄(t′) +O(K2), (3.42)

⟨⟨b̂
†
out(u1) b̂

†
out(u2) b̂out(u3) b̂out(u4)⟩⟩Kerr = O(K2). (3.43)

Contrary to the case of the damped harmonic oscillator in Chap. 2, the third cummulant does
not vanish for the Kerr oscillator. With this we have completely characterized the statistics of
the output field for the Kerr oscillator to first order in the Kerr parameter K.

3.3 Coherent Input

So far our treatment has been independent of the input encoded by the function f . In the final
section of this chapter we will consider a coherent input state described through the following
function,

f(t) = Ae−iωLt, f [ω] = 2πAδ(ω − ωL). (3.44)

For the amplitude A being equal to one, the average output field takes the following form,

⟨b̂
†
out(u)⟩Kerr = ⟨b̂

†
out(u)⟩DHO +

4ie−iuωLKκ
(
8κ+ 3nB

(
κ2 + 4(ωL − ωS)

2
))

(iκ+ 2(ωL − ωS))((κ+ 2iωL)2 + 4ω2
S)

+O(K2). (3.45)

The averages values of the damped harmonic oscillator (DHO) can be found in Sec.2.2.2. On
resonance and in the limit of zero temperature this expression simplifies to,

⟨b̂
†
out(u)⟩Kerr = ⟨b̂

†
out(u)⟩DHO + 32e−iuωL

K

iκ2 − 4κωS
+O(K2). (3.46)

At zero temperature and with the detuning ∆ = ωS − ωL the output flux takes the following
form,

⟨b̂
†
out(u) b̂out(w)⟩Kerr = 1 + 256

Kκ2ωS

(4∆2 + κ2)
2
(
κ2 + 4(∆− 2ωS)

2
) +O(K2). (3.47)

In both Eq. (3.46) and Eq. (3.47) we see a divergence for the coupling constant κ and the detuning
∆ going to zero. This traces back to the fact that ⟨â⟩ diverges in the limit of zero coupling and
resonant driving, as can already be seen in Eq. (2.10) from Sec. 2.1. Hence the number of photons
in the cavity goes to infinity and perturbation theory in the Kerr term of the Kerr Hamiltonian
breaks down.
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Figure 3.1: Absolute value of the third cumulant for K/κ = 0.06, a coherent input signal and
where we set u2 = u3 = 0 and varied u1 = τ in Eq. (3.42).

Figure 3.2: Absolute value of the third cumulant for K/κ = 0.06, a coherent input signal and
where we set u3 = 0 and varied u1 = u2 = τ in Eq. (3.42).
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Conclusion and Outlook

In this thesis we have explained the standard approach to input–output theory in Sec. 1.2, given
an overview over the Keldysh path integral formalism in Sec. 1.3 and detailed the derivation and
application of our novel approach to input–output theory through the use of the Keldysh path
integral in Sec. 1.3.

The path integral based approach we presented led us to the well–known input–output relation
by means of a stationary phase approximation in our path integral, see Sec. 1.4.4, and we defined
its most central quantity with the moment generating functional of the output field. From this
quantity, once evaluated exactly or perturbatively for a specified system, we showed how one can
derive the moments of the output field and evaluate the P-functional.

From this general treatment of the formalism, we moved on to two examples in Chap. 2 and
Chap. 3 to demonstrate our approach.

We first showcased our method through the solvable system of a single mode, i.e. a damped
harmonic oscillator in our setting. We solved for the statistics of the output field through
both the standard approach to input–output theory, Sec. 2.1, as well as our novel path–integral
based approach, Sec. 2.2. Both approaches gave the same exact results without the need for
perturbation theory. In this treatment we devoted special attention to two input signals, namely
a time independent coherent signal, see Sec. 2.2.2, and a time dependent Gaussian pulse, see
Sec. 2.2.3. The latter showed interference effects between the input and output flux characteristic
for the setup we consider. No new results were found nor expected in this chapter and it served
as an introduction and test case for our approach. After this proof of concept, we treated the
Kerr oscillator in our novel formalism and derived perturbative results for the statistics of the
output field to linear order in the Kerr parameter. This was achieved by calculating the moment
generating functional as well as the cumulant generating functional in Sec. 3.1 and subsequent
derivation of the non–zero moments and cumulants of the system in Sec. 3.2. Interestingly, we
found that contrary to the damped harmonic oscillator, the third cumulant of the output field
does not vanish for the Kerr oscillator in linear response theory.

Having presented the path integral approach to input–output theory and after applying it to
scenarios where comparison to existing results was possible, the next step will be to apply the
formalism to scenarios where it is difficult to obtain results with standard input–output theory.
A first step in this direction will be to investigate the parametric oscillator which is known to
produce squeezed states of light and then extend that line of inquiry to the Kerr parametric
oscillator which has the curious feature of displaying a negative Wigner function in the output
field for a positive Wigner function in the intra–cavity field [14].
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Appendix A

Appendix A contains additional information, theoretical prerequisites or omitted details in cal-
culations regarding the material presented in the chapter on theoretical formalism, Chap. 1.

A.1 Standard Input–Output Theory

A.1.1 Method of Variation of Parameters

For a first order inhomogeneous linear differential equation,

d

dt
y(t) = p(t)y(t) + f(t),

the solution, found by variation of parameters, is given by,

y(t) = v(t)eP (t) +AeP (t),

where
d

dt
v(t) = e−P (t)f(t),

and P (t) is the anti-derivative of p(t).

A.1.2 Retrieving System Modes from Input and Output

We make use of the following two identities,∫ ∞

−∞
dωe−iω(t−t′) = 2πδ(t− t′), (A.1)∫ t

t0

dτf(τ)δ(τ − t) =
1

2
f(t). (A.2)

We prove the first relation, Eq. (1.13), the second one follows from analogy.

√
κ

2πigk

∫ ωk+δω

ωk−δω

dω

∫ ∞

−∞
dt eiω(t−t0) b̂in(t)

=
1

2πgk

∑
l

∫ ωk+δω

ωk−δω

dω

∫ ∞

−∞
dt gle

it0(ωl−ω)e−it(ω−ωl)b̂l(t0).
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Integration over t yields a delta distribution,

· · · = 1

gk

∑
l

∫ ωk+δω

ωk−δω

dω gle
it0(ωl−ω)δ(ω − ωl)b̂l(t0),

and as δω is chosen s.t. δω ≤ ωl − ωl−1 ∀l, we find,

· · · = 1

gk
gk b̂k(t0) = b̂k(t0).

A.2 Keldysh Input–Output Action

A.2.1 Bosonic Gaussian Integral

We cite the formula for computing bosonic Gaussian integrals from [1],

∫
D[ϕ]e

− 1
2

ϕ̄
ϕ

T

Γ

ϕ
ϕ̄

+

J1
J2

·

ϕ
ϕ̄


=

1√
det{Γ}

e

1
2

J1
J2

T

Γ−1

J2
J1


. (A.3)

A.2.2 Integrating out Bath Modes

What follows is a detailed description of the step in which we integrate out all the bath modes
from the system that are neither set at t0 = t2N−1 nor tN = tN−1. The notation here can be
confusing, the exponents Sk for k = 1, 2, 3, 4, 5, 6 have no imaginary unit factor i contrary to
the way actions are usually written in quantum field theory. We are faced with the following
integral,

Z =

∫ 2N−1∏
j=0

d[ϕj ]e
iSS [ϕ]

(∏
k

d[φk,0]d[φk,N−1]d[φk,N ]d[φk,2N−1]e
S1eS2

)
N−2∏

j=1

∏
k

d[φk,j ]e
S3eS4


︸ ︷︷ ︸

:=∆

 2N−2∏
j=N+2

∏
k

d[φk,j ]e
S5eS6


︸ ︷︷ ︸

:=□

, (A.4)
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with,

S1 = − ln ρK(φ̄0, φ2N−1)

−
∑
k

[φk,0φ̄k,0 − φ̄k,N−1φk,N−1 − φ̄k,Nφk,N + φ̄k,Nφk,N−1 − φ̄k,2N−1φk,2N−1], (A.5)

S2 = iδt
(
gkϕ̄1φk,0 + g∗kφ̄k,N−1ϕN−2 − gkϕ̄N+1φk,N − g∗kφ̄k,2N−1ϕ2N−1

)
, (A.6)

S3 = −φ̄k,1φk,1 −
N−2∑
j=2

[φ̄k,jφk,j − φ̄k,jφk,j−1 + iδtωkφ̄k,jφk,j−1], (A.7)

S4 = φ̄k,1φk,0

−iδt(ωkφ̄k,1φk,0 + g∗kφ̄k,1ϕ0 +

N−2∑
j=2

[
gkϕ̄jφk,j−1 + g∗kφ̄k,jϕj−1

]
+ gkϕ̄N−1φk,N−2 + ωkφ̄k,N−1φk,N−2)

(A.8)

+ φ̄k,N−1φk,N−2,

S5 = −φ̄k,N+1φk,N+1 −
2N−2∑
j=N+2

[φ̄k,jφk,j − φ̄k,jφk,j−1 − iδtωkφ̄k,jφk,j−1], (A.9)

S6 = φ̄k,N+1φk,N + iδt(ωkφ̄k,N+1φk,N + ig∗kφ̄k,N+1ϕN

+

2N−2∑
j=N+2

[
gkϕ̄jφk,j−1 + g∗kφ̄k,jϕj−1

]
+ gkϕ̄2N−1φk,2N−2 + ωkφ̄k,2N−1φk,2N−2)

+ φ̄k,2N−1φk,2N−2. (A.10)

We now evaluate the integral containing the terms in what we denoted with ∆ in Eq. (A.4), eval-
uating the integral containing □ follows from analogy. We use the formula for multidimensional
Gaussian integrals, Eq. (A.3), to evaluate the integral for a fixed k,

Γ =

(
Γ(1) 0
0 Γ(2)

)
∈ C(2N−4)×(2N−4), (A.11)

Γ(1) =



1 0 · · · · · · · · · 0
h 1 0 · · · · · · 0
0 h 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · · · · h 1


, (A.12)

Γ(2) =
(
Γ(1)

)T
∈ C(N−2)×(N−2). (A.13)

Where we introduced
h = −(1− iδtωk) = −e−iδtωk +O

(
δt2
)
. (A.14)
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J1 =

iδtgk


ϕ̄2

ϕ̄3

...

...
ϕ̄N−1

+



0
...
...
0

hφ̄k,N−1



 ∈ CN−2, (A.15)

J2 =

iδtg
∗
k



ϕ0

ϕ1

...

...
ϕN−3

+



hφk,0

0
...
...
0



 ∈ CN−2. (A.16)

We invert Γ,

Γ−1 =

((
Γ(1)

)−1
0

0
(
Γ(2)

)−1

)(
Γ(1)

)−1

=



1 0 · · · · · · · · · 0
−h 1 0 · · · · · · 0
h2 −h 1 0 · · · 0

−h3 h2 . . .
. . .

...
...

. . .
. . .

. . .
...

(−h)N−3 · · · −h3 h2 −h 1


, (A.17)

(
Γ(2)

)−1

=

((
Γ(1)

)−1
)T

. (A.18)

With Γ−1 we can determine the exponent as follows,(
J1
J2

)T

Γ−1

(
J2
J1

)
= JT

1

(
Γ(1)

)−1

J2 + JT
2

(
Γ(2)

)−1

J1 = 2 ·
(
JT
1

(
Γ(1)

)−1

J2

)
. (A.19)

We turn to evaluating the expression above,

(
Γ(1)

)−1

J2 =

iδtg∗k


ϕ0

ϕ1 − hϕ0

ϕ2 − hϕ1 + h2ϕ0

...∑N−2
l=1 ϕl−1(−h)N−2−l

− φk,0


−h
h2

−h3

...
(−h)N−2·



, (A.20)

with this we can conclude,

JT
1

(
Γ(1)

)−1

J2 = −δt2|gk|2
N−2∑
j=1

j∑
l=1

ϕl−1ϕ̄j+1(−h)j−l − iδtgkφk,0

N−1∑
j=2

ϕ̄j(−h)j−1

− iδtg∗kφ̄k,N−1

N−2∑
j=1

ϕj−1(−h)N−1−j − φ̄k,N−1φk,0(−h)N−1

= −δt2|gk|2
N−2∑
j=1

j∑
l=1

ϕl−1ϕ̄j+1e
−iωk(tj−tl) − iδtgkφk,0

N−1∑
j=2

ϕ̄je
−iωk(tj−1−t0)

− iδtg∗kφ̄k,N−1

N−2∑
j=1

ϕj−1e
−iωk(tN−t0) − φ̄k,N−1φk,0e

−iωk(tN−t0) +O
(
δt2
)
. (A.21)
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Where we used h = −e−iδtωk +O
(
δt2
)
in the last equality and introduced,

tn = t0 +

n∑
m=1

δtn. (A.22)

Note that this implies tN−1 = tN . With det{Γ} = det
{
Γ(1)

}
· det

{
Γ(2)

}
= 1, we can conclude

our calculation of ∆,

∆ = eJ
T
1 (Γ

(1))
−1

J2 , (A.23)

and by analogy evaluate □.

A.2.3 Input States

Thermal State

With a canonical thermal state, or Gibbs state, for a system with Hamiltonian Ĥ and inverse
temperature β, we mean the following density matrix,

ρ̂G =
1

Z
e−βĤ . (A.24)

With Z being the thermodynamic partition function,

Z = Tr
{
e−βĤ

}
=

∞∑
n=0

⟨n| e−βĤ |n⟩ =
∞∑

n=0

e−βEn , (A.25)

assuming an equally spaced spectrum of energy eigenvalues we can further evaluate,

∞∑
n=0

e−βEn =

∞∑
n=0

e−βωn =
1

1− e−βω
. (A.26)

Where we employed the formula for a geometric series in the last step, assuming |e−βω| ≤ 1, ∀n.
Another important identity is the matrix element of the thermal state in the basis of coherent
states. Let |φ⟩ , |φ′⟩ be two coherent states,

⟨φ| e−βĤ |φ′⟩ =

( ∞∑
n=0

φ̄n

√
n!

⟨n|

)
e−βĤ

( ∞∑
m=0

φ′m
√
m!

|m⟩

)
=

∞∑
n=0

(φ̄φ′)
n

n!
e−βEn , (A.27)

assuming an equally spaced spectrum of energy eigenvalues we can further evaluate,

∞∑
n=0

(φ̄φ′)
n

n!
e−βEn =

∞∑
n=0

(
φ̄φ′e−βω

)n
n!

= eφ̄φ′e−βω

. (A.28)

Product of Coherent States

ρB(φin) = exp

N−1∑
j=0

δt
(
fjφ̄

+
in,j + f̄jφ

−
in,j − |fj |2

). (A.29)
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The first two terms are self-explanatory, the third term emerges as follows,

N−1∑
j=0

δt|fj |2 =

N−1∑
j=0

δtf̄jfj =
1

N

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

ᾱkαle
i(tj−t0)(ωk−ωl)

=
1

N

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

ᾱkαle
2πi j

N (k−l) =
∑
k

|αk|2, (A.30)

where we used

i(tj − t0)(ωk − ωl) = iδtjδω(k − l) = i
2π

N��δω
j��δω(k − l) = 2πi

j

N
(k − l). (A.31)

Kronecker Delta Sum Identity

We recall the following identity,

1

N

N∑
k=1

e2πi
k
N (n−m) = δn,m. (A.32)

For the case n = m the identity is trivial, for the case n ̸= m one can prove it using the formula
for the geometric series,

1

N

N∑
k=1

e2πi
k
N (n−m) =

1

N

(
1− 1

1− e2πi
1
N (n−m)

)
= 0. (A.33)

Baker-Campbell-Hausdorff Formula

For two possibly non-commuting operators X,Y the product of their exponentials is given by,

eXeY = eZ , (A.34)

with

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . . . (A.35)

When X and Y commute with their commutator that implies the following relation,

eXeY = eX+Y+ 1
2 [X,Y ]. (A.36)

Displacement Operator

The displacement operator is defined as follows [6],

D̂(α) = eαâ
†−ᾱâ, (A.37)

and gets its name from the following relation,

D̂(α) |0⟩ = eαâ
†−ᾱâ |0⟩ = e−

|α|2
2 eαâ

†
e−ᾱâ |0⟩ = e−

|α|2
2 eαâ

†
|0⟩ = e−

|α|2
2 |α⟩ , (A.38)
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where we used Eq. (A.36), Eq. (1.32) and
[
â, â†

]
= 1 in the last two steps. We prove a few

useful relations,

D̂†(α) = eαâ−αâ†
= e−(αâ

†−ᾱâ) = D̂(−α), (A.39)

D̂(−α)D̂(β) = e−αâ†+ᾱâeβâ
†−β̄â = e(β−α)â†−(β−α)âe

1
2 (ᾱβ−β̄α) = D̂(β − α)e

1
2 (ᾱβ−β̄α), (A.40)

D̂(−α) |β⟩ = e
|β|2
2 D̂(−α)D̂(β) |0⟩ = e

|β|2
2 e

1
2 (ᾱβ−β̄α)e−

|β−α|2
2 |β − α⟩ = eβᾱ−

|α|2
2 |β − α⟩ . (A.41)

A.2.4 Stationary Phase Approximation

Functional Derivative

We can define a functional derivative of a functional F [f ] as follows,

δF

δf(x)
= lim

ϵ→0

F [f(x′) + ϵδ(x− x′)]− F [f(x′)]

ϵ
. (A.42)

(cited from [10]).

A.2.5 Statistics of the Input Field

The discrete version of the generating functional for the input field is given as follows,

Λin[χ, χ
′] = e−

∑N−1
j=0 iχjfj+iχ′

j f̄j+χjχ
′
jnB , (A.43)

from which one can derive expectation values like the following first moment,

i
∂

∂χj
Λin[χ, χ

′]

∣∣∣∣
χ=χ′=0

= fj . (A.44)

A.2.6 Statistics of the Output Field

Discrete Version of the Generating Functional

We compute the generating functional for the moments of the output field in the discrete notation.
For this we start with the Keldysh input-output action from Eq. (1.65) and add source fields

χ, χ′ to the fields corresponding to b̂out(tj) and b̂†out(tj) on the forward and backward timebranch
respectively.

Λout[χ, χ
′] =

∫
D[ϕ, φin, φout]e

iSio[ϕ,φin,φout]−i
∑N−1

j=0 χjφ
+
out,j+χ′

j φ̄
−
out,j , (A.45)

with

Sio[ϕ, φin, φout] = Sio
S [ϕ] + Sio

B [φin, φout] + Sio
V [ϕ, φout, φin], (A.46)
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where

Sio
B [φin, φout] = iδt

N−1∑
j=0

φ̄+
in,jφ

+
in,j − φ̄+

out,jφ
+
in,j + φ̄+

out,jφ
+
out,j (A.47)

− φ̄−
out,jφ

+
out,j + φ̄−

out,jφ
−
out,j − φ̄−

in,jφ
−
out,j + φ̄−

in,jφ
−
in,j − i ln ρB(φin),

Sio
V [ϕ, φin, φout] = iδt

√
κ

N−1∑
j=1

ϕ̄+
j φ

+
in,j−1 − ϕ+

j−1φ̄
+
out,j − ϕ̄−

j−1φ
−
out,j + φ̄−

in,jϕ
−
j . (A.48)

We start by integrating out the output-bath modes using the following form of the multidimen-
sional Gaussian integral, ∫

D[z]e−z̄TΓz+JT
1 z+JT

2 z̄ =
1

det{Γ}

2

eJ1Γ
−1J2 . (A.49)

In our case z =
(
φ+
out,0 · · · φ+

out,N−1 φ−
out,0 · · · φ−

out,N−1

)T
. We read off from the expres-

sions in Eq. (A.46),

Γ = δt



1
1

. . .

1
−1 1

−1 1
. . .

. . .

−1 1


(A.50)

inverting this matrix yields,

Γ−1 =
1

δt



1
1

. . .

1
1 1

1 1
. . .

. . .

1 1


. (A.51)

We can further read of J1, J2,

J1 = −i



χ0

χ1

...
χN−1

0
0
...
0


+ δt



0
0
...
0

φ̄−
in,0

φ̄−
in,1
...

φ̄−
in,N−1


+ δt

√
κ



0
0
...
0
0
ϕ̄−
0
...

ϕ̄−
N−2


, (A.52)
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J2 = −i



0
0
...
0
χ′
0

χ′
1
...

χ′
N−1


+ δt



φ+
in,0

φ+
in,1
...

φ+
in,N−1

0
0
...
0


+ δt

√
κ



0
ϕ+
0
...

ϕ+
N−2

0
0
...
0


. (A.53)

Now we calculate the exponent. First we evaluate Γ−1J2,

Γ−1J2 = − i

δt



0
0
...
0
χ′
0

χ′
1
...

χ′
N−1


+



φ+
in,0

φ+
in,1
...

φ+
in,N−1

φ+
in,0

φ+
in,1
...

φ+
in,N−1


+ κ



0
ϕ+
0
...

ϕ+
N−2

0
ϕ+
0
...

ϕ+
N−2


, (A.54)

and now the full term,

J1Γ
−1J2 =


−i



χ0

χ1

...
χN−1

0
0
...
0


+ δt



0
0
...
0

φ̄−
in,0

φ̄−
in,1
...

φ̄−
in,N−1


+ δt

√
κ



0
0
...
0
0
ϕ̄−
0
...

ϕ̄−
N−2




(A.55)


− i

δt



0
0
...
0
χ′
0

χ′
1
...

χ′
N−1


+



φ+
in,0

φ+
in,1
...

φ+
in,N−1

φ+
in,0

φ+
in,1
...

φ+
in,N−1


+ κ



0
ϕ+
0
...

ϕ+
N−2

0
ϕ+
0
...

ϕ+
N−2




=− i

N−1∑
j=0

[
χjφ

+
in,j + χ′

jφ̄
−
in,j

]
− i

√
κ

N−1∑
j=1

[
χjϕ

+
j−1 + χ′

j ϕ̄
−
j−1

]
+ δt

N−1∑
j=0

φ+
in,jφ̄

−
in,j

+ δt
√
κ

N−1∑
j=1

[
φ̄−
in,jϕ

+
j−1 + φ+

in,j ϕ̄
−
j−1

]
+ δtκ

N−1∑
j=1

ϕ̄−
j−1ϕ

+
j−1. (A.56)
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This result agrees with the continuous version found previously. After integrating out the output–
modes the generating functional takes the following form,

Λout[χ, χ
′] =

∫
D[ϕ, φin]e

iS[ϕ,φin], (A.57)

with

S[ϕ, φin] = Sio
S [ϕ]− iδtκ

N−1∑
j=1

ϕ̄−
j−1ϕ

+
j−1 −

√
κ

N−1∑
j=1

[
χjϕ

+
j−1 + χ′

j ϕ̄j−1

]
+iδt

N−1∑
j=0

[
φ̄+
in,jφ

+
in,j + φ̄−

in,jφ
−
in,j − φ+

in,jφ̄
−
in,j

]
− i ln ρB(φin)

−
N−1∑
j=0

[
χjφ

+
in,j + χ′

jφ̄
−
in,j

]

+iδt
√
κ

N−1∑
j=1

[
ϕ̄+
j φ

+
in,j−1 + φ̄−

in,j−1ϕ
−
j − φ̄−

in,jϕ
+
j−1 − φ+

in,j ϕ̄
−
j−1

]
. (A.58)

Now we integrate out the input–modes with the same procedure as above.

Γ = δt



1 −e−βΩ

1 −e−βΩ

. . .
. . .

1 −e−βΩ

−1 1
−1 1

. . .
. . .

−1 1


(A.59)

inverting this matrix yields,

Γ−1 =
1

δt

1

eβΩ − 1



eβΩ 1
eβΩ 1

. . .
. . .

eβΩ 1
eβΩ eβΩ

eβΩ eβΩ

. . .
. . .

eβΩ eβΩ



=
1

δt



1 + nB nB

1 + nB nB

. . .
. . .

1 + nB nB

1 + nB 1 + nB

1 + nB 1 + nB

. . .
. . .

1 + nB 1 + nB


(A.60)
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We can further read of J1, J2

J1 = −i



χ0

χ1

...
χN−1

0
0
...
0


− δt

√
κ



ϕ̄+
1
...

ϕ̄+
N−1

0
0
0
...
0


+ δt

√
κ



0
ϕ̄−
0
...

ϕ̄−
N−2

0
0
...
0


+

δt

1 + nB



0
0
...
0
f̄0
f̄1
...

f̄N−1


, (A.61)

J2 = −i



0
0
...
0
χ′
0

χ′
1
...

χ′
N−1


− δt

√
κ



0
0
...
0
ϕ−
1
...

ϕ−
N−2

0


+ δt

√
κ



0
0
...
0
0
ϕ+
0
...

ϕ+
N−1


+

δt

1 + nB



f0
f2
...

fN−1

0
0
...
0


. (A.62)

Now we calculate the exponent. First we evaluate Γ−1J2,

Γ−1J2 = − i

δt



nBχ
′
0

nBχ
′
1

...
nBχ

′
N−1

(1 + nB)χ
′
0

(1 + nB)χ
′
1

...
(1 + nB)χ

′
N−1


−
√
κ



nBϕ
−
1

...
nBϕ

−
N−1

0
(1 + nB)ϕ

−
1

...
(1 + nB)ϕ

−
N−1

0


+
√
κ



0
nBϕ

+
0

...
nBϕ

+
N−2

0
(1 + nB)ϕ

+
0

...
(1 + nB)ϕ

+
N−2


+



f0
f1
...

fN−1

f0
f1
...

fN−1


.

(A.63)
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and now the full term,

J1Γ
−1J2 =


−i



χ0

χ1

...
χN−1

0
0
...
0


− δt

√
κ



ϕ̄+
1
...

ϕ̄+
N−1

0
0
0
...
0


+ δt

√
κ



0
ϕ̄−
0
...

ϕ̄−
N−2

0
0
...
0


+

δt

1 + nB



0
0
...
0
f̄0
f̄1
...

f̄N−1





− i

δt



nBχ
′
0

nBχ
′
1

...
nBχ

′
N−1

(1 + nB)χ
′
0

(1 + nB)χ
′
1

...
(1 + nB)χ

′
N−1


−
√
κ



nBϕ
−
1

...
nBϕ

−
N−1

0
(1 + nB)ϕ

−
1

...
(1 + nB)ϕ

−
N−1

0


+
√
κ



0
nBϕ

+
0

...
nBϕ

+
N−2

0
(1 + nB)ϕ

+
0

...
(1 + nB)ϕ

+
N−2


+



f0
f1
...

fN−1

f0
f1
...

fN−1




.

J1Γ
−1J2 = −nB

δt

N−1∑
j=0

χjχ
′
j

+i
√
κnB

N−1∑
j=1

[
χj−1ϕ

−
j − χjϕ

+
j−1 + ϕ̄+

j χ
′
j−1 − ϕ̄−

j−1χ
′
j

]
−i

N−1∑
j=0

[
χjfj + f̄jχ

′
j

]
+δtκnB

N−1∑
j=1

[
ϕ̄+
j ϕ

−
j − ϕ̄+

j ϕ
+
j−1 − ϕ̄−

j−1ϕ
−
j + ϕ̄−

j−1ϕ
+
j−1

]
+δt

√
κ

N−1∑
j=1

[
ϕ+
j−1f̄j − ϕ−

j f̄j−1

]
+

δt

1 + nB

N−1∑
j=0

f̄jfj . (A.64)

After integrating out the input–modes the generating functional takes the following form,

Λout[χ, χ
′] =

∫
D[ϕ]eiS[ϕ], (A.65)
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with

S[ϕ, χ, χ′] =Sio
S [ϕ]− iδtκ

N−1∑
j=1

ϕ̄−
j−1ϕ

+
j−1 −

√
κ

N−1∑
j=1

[
χjϕ

+
j−1 + χ′

j ϕ̄j−1

]
+ i

nB

δt

N−1∑
j=0

χjχ
′
j+

√
κnB

N−1∑
j=1

[
χj−1ϕ

−
j − χjϕ

+
j−1 + ϕ̄+

j χ
′
j−1 − ϕ̄−

j−1χ
′
j

]
−

N−1∑
j=0

[
χjfj + f̄jχ

′
j

]
− iδtκnB

N−1∑
j=1

[
ϕ̄+
j ϕ

−
j − ϕ̄+

j ϕ
+
j−1 − ϕ̄−

j−1ϕ
−
j + ϕ̄−

j−1ϕ
+
j−1

]
− iδt

√
κ

N−1∑
j=1

[
ϕ+
j−1f̄j − ϕ−

j f̄j−1

]
.

(A.66)
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Appendix B

Appendix B contains additional information, theoretical prerequisites or omitted details in cal-
culations regarding the material presented in the chapters on the damped harmonic oscillator
and the Kerr oscillator, Chap. 2 and Chap. 3.

B.1 Damped Harmonic Oscillator

Fourier Transform

We are using the following convention of the Fourier transform,

f [ω] =

∫ ∞

−∞
dtf(t)eiωt, f(t) =

1

2π

∫ ∞

−∞
dωf [ω]e−iωt (B.1)

This is the convention used in [3].

B.2 Kerr Oscillator

B.2.1 Output Field

Calculation of First Moment

⟨b̂out(u)⟩Kerr = i
δΛKerr[χ, χ

′]

δχ(u)

∣∣∣∣
χ=χ′=0

= ⟨b̂out(u)⟩DHO

+K

∫
dt

 δ⟨
(
ϕ̄−ϕ−)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

−
δ⟨
(
ϕ̄+ϕ+

)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

+O(K2)

(B.2)
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We firstly consider the derivatives of the two terms inside the integral of the interaction term in
the action with respect to either source field.

δ⟨
(
ϕ̄±ϕ±)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

=
δ

δχ(u)

(
2n2

B + 3nB⟨ϕ̄±⟩[χ]⟨ϕ±⟩[χ′] + ⟨ϕ̄±⟩2[χ]⟨ϕ±⟩2[χ′]
)∣∣∣∣

χ=χ′=0

= 3nB⟨ϕ±⟩[0] δ

δχ(u)
⟨ϕ̄±⟩[χ]

∣∣∣∣
χ=χ′=0

+ ⟨ϕ±⟩2[0] δ

δχ(u)
⟨ϕ̄±⟩2[χ]

∣∣∣∣
χ=χ′=0

. (B.3)

δ⟨
(
ϕ̄±ϕ±)2⟩[χ, χ′]

δχ′(u)

∣∣∣∣∣
χ=χ′=0

=
δ

δχ′(u)

(
2n2

B + 3nB⟨ϕ̄±⟩[χ]⟨ϕ±⟩[χ′] + ⟨ϕ̄±⟩2[χ]⟨ϕ±⟩2[χ′]
)∣∣∣∣

χ=χ′=0

= 3nB⟨ϕ̄±⟩[0] δ

δχ′(u)
⟨ϕ±⟩[χ]

∣∣∣∣
χ=χ′=0

+ ⟨ϕ̄±⟩2[0] δ

δχ′(u)
⟨ϕ±⟩2[χ]

∣∣∣∣
χ=χ′=0

. (B.4)

Now we evaluate the integrand by considering both terms for either source field. We start with
the derivatives with respect to χ,

δ⟨
(
ϕ̄−(t)ϕ−(t)

)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

= 3nB

(
−i

√
κ

∫
dt1G

R(t− t1)f(t1)

)(√
κ
F − 1

2
GR(u− t)

)

−
(
κ

∫
dt3

∫
dt4G

R(t− t3)f(t3)G
R(t− t4)f(t4)

)(
iκ

∫
dt5(F − 1)GR(u− t)GA(t5 − t)f̄(t5)

)
,

(B.5)

δ⟨
(
ϕ̄+(t)ϕ+(t)

)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

= 3nB

(
−i

√
κ

∫
dt1G

R(t− t1)f(t1)

)(√
κ
F + 1

2
GR(u− t)

)

−
(
κ

∫
dt3

∫
dt4G

R(t− t3)f(t3)G
R(t− t4)f(t4)

)(
iκ

∫
dt5(F + 1)GR(u− t)GA(t5 − t)f̄(t5)

)
,

(B.6)

this leads to the following integrand,

δ⟨
(
ϕ̄−(t)ϕ−(t)

)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

−
δ⟨
(
ϕ̄+(t)ϕ+(t)

)2⟩[χ, χ′]

δχ(u)

∣∣∣∣∣
χ=χ′=0

= 3inBκG
R(u− t)

∫
dt1G

R(t− t1)f(t1)

+ 2iκ2GR(u− t)

∫∫∫
dt3dt4dt5G

R(t− t3)f(t3)G
R(t− t4)f(t4)G

A(t5 − t)f̄(t5) (B.7)
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We turn to evaluating the terms with the derivative with respect to χ′,

δ⟨
(
ϕ̄+ϕ+

)2⟩[χ, χ′]

δχ′(u)

∣∣∣∣∣
χ=χ′=0

= 3nB

(∫
dt1

√
κiGA(t1 − t)f̄(t1)

)(
−
√
κ
F − 1

2
GA(t− u)

)

+

(
−κ

∫∫
dt2dt3G

A(t2 − t)f̄(t2)G
A(t3 − t)f̄(t3)

)(
iκ(F − 1)

∫
dt4G

A(t− u)GR(t4 − t)f(t4)

)
,

(B.8)

δ⟨
(
ϕ̄−ϕ−)2⟩[χ, χ′]

δχ′(u)

∣∣∣∣∣
χ=χ′=0

= 3nB

(√
κ

∫
dt1iG

A(t1 − t)f̄(t1)

)(
−
√
κ
F + 1

2
GA(t− u)

)

+

(
−κ

∫∫
dt2dt3G

A(t2 − t)f̄(t2)G
A(t3 − t)f̄(t3)

)(
iκ(F + 1)

∫
dt4G

A(t− u)GR(t− t4)f(t4)

)
,

(B.9)

this leads to the following integrand,

δ⟨
(
ϕ̄−(t)ϕ−(t)

)2⟩[χ, χ′]

δχ′(u)

∣∣∣∣∣
χ=χ′=0

−
δ⟨
(
ϕ̄+(t)ϕ+(t)

)2⟩[χ, χ′]

δχ′(u)

∣∣∣∣∣
χ=χ′=0

= −3inBκG
A(t− u)

∫
dt1G

A(t1 − t)f̄(t1)

− 2iκ2GA(t− u)

∫∫∫
dt2dt3dt4G

A(t2 − t)f̄(t2)G
A(t3 − t)f̄(t3)G

R(t4 − t)f(t4). (B.10)
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