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Abstract

Solving nonlinear coupled differential equations is often challenging and, in some cases, even im-
possible. Consequently, rather than pursuing exact solutions, it is common to focus on obtaining
reliable approximations. In the field of open quantum systems, the method of adiabatic elimi-
nation is a well-established approach to obtain such an approximation. This thesis introduces
the prodiabatic elimination, a novel technique designed to extend beyond the limitations of the
adiabatic elimination. To establish a testing field, we consider a driven cavity that is linearly
coupled to a two-level system, described by the driven Jaynes-Cummings Hamiltonian. Addi-
tionally, both the cavity and the two-level system are subject to dissipation, where we model
the overall dynamics by a Lindblad master equation. In the adiabatic elimination, the dynamics
are solved in the two-level subspace and subsequently mapped to the cavity. While this ap-
proach is relatively straightforward, it also has inherent limitations. Primarily, it is unable to
account for the initial dynamics and cannot incorporate higher-order corrections. The prodia-
batic elimination simplifies the formal solution through the application of a Taylor expansion
to the adiabatically eliminated cavity operator, resulting in an approach analogous to the adia-
batic elimination, but including higher-order effects. Compared to the adiabatic elimination, a
notable enhancement in the accuracy of the g(2)-function and various other quantities could be
observed. In addition, we investigated how standard perturbation techniques perform on this
problem, using the method of multiple scales. While the method can include initial conditions
and higher-order corrections, the required calculations are tedious and do not consistently out-
perform the adiabatic elimination. The prodiabatic elimination offers a stepping stone for future
research, potentially enabling more precise control and understanding of quantum systems in
diverse scenarios.
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1. List of Symbols

Symbol Description

κ Dissipation strength of the cavity.
γ Dissipation strength of the two-level system.
g Coupling strength between cavity and two-level system.

E, ϵ
√
κ Strength of the coherent drive coupled to the cavity.

ϵ2 Incoming photon flux per second.
∆c Detuning between drive and cavity frequency.
∆d Detuning between drive and two-level system frequency.
a Bosonic ladder operator of the cavity.
σ Fermionic annihilation operator |0⟩⟨1| of the two-level system.

σz, Z Pauli z-matrix: |1⟩⟨1| − |0⟩⟨0|.
•† Hermitian conjugate of •.
•∗ Conjugation of •.

⟨•⟩ss Steady state expectation value of •.
tr{•} Trace operation acting on •.

Operator Relations

[a(†), σ(†)] = 0
[a, a†] = 1
[σ†, σ] = σz
σσ = 0
σ†σ = |1⟩⟨1| = (σz + 1)/2
σσ† = |0⟩⟨0| = (1− σz)/2

{σ, σ†} = 1



2. Introduction

2.1. Motivation

The interplay between light and matter is a fundamental process that enables our perception of
the world, including the ability to see colors. But these are not the only interesting properties
of light, its nature and how it can be described in different scenarios is equally important to
physicists. Consequently, the investigation of the interaction between light and matter based on
quantum physics constitutes an area of significant importance [1–3]. Optical cavities, formed by
two mirrors that confine light between them, are essential for studying these interactions in a
controlled manner. The motivation for utilizing cavities in place of direct illumination is twofold.
Firstly, they enhance the light-matter coupling through the Purcell effect, and secondly, they
restrict the scattering of light to a single direction [4]. From this fundamental configuration, a
multitude of intriguing phenomena can be explored. These include the development of lasers
[5, 6], single-photon sources [7], and microcavities [8]. However, cavities are not only of great
interest to physicists but also to biologists, who employ them as a tool in the detection and
measurement of nanoparticles and viruses [9, 10].

A paradigmatic model to investigate light-matter coupling is provided by the Jaynes-Cummings
model, which describes the interaction between a single light mode with a two-level system. In
addition to that, we will also allow for dissipative terms and a drive. While this seems to be
just a model to test theory on, it can also be realized experimentally in various different ways
[11–14]. Our goal is to find a way to approximate the dynamics of both the cavity mode and
the two-level system. This requires solving a system of nonlinear coupled differential equations.
Solving these is a non-trivial problem; while analytical solutions exist for the non-driven, non-
dissipative case [15], there is currently no analytical solution for the more complicated driven,
dissipative scenario.
One of the standard techniques to obtain an approximation is the so-called, adiabatic elimi-

nation, which assumes the existence of different time scales in the problem and further assumes
that the fast one can be removed. In our case, the cavity changes on a fast timescale, while
the two-level system changes slowly in comparison. Therefore, we approximate that the cavity
adapts infinitely fast to changes in the two-level system, i.e. the cavity is always in equilibrium
with the two-level system. This allows for a description of the cavity dynamics solely based
on the two-level system. Due to this simplification, the problem becomes linear and thus solv-
able. For this solution to be reasonable, one needs initial states that are consistent with the
approximation, as well as system values that allow the cavity mode to adapt quickly, usually
done by a high cavity dissipation. We believe that these restrictions are too harsh, hence we
want to improve this technique in a way that we can include higher-order corrections as well as
incorporate the initial conditions.
Once a description of the time dynamics is found, the next question is how the photons

leave the cavity and are subsequently measured, this would provide a simple experimentally
measurable quantity. A common quantifier is provided by the so-called second-order photon
correlation function or g(2)-function for short. It is one of the most important tools to distinguish
classical from non-classical light sources [16]. This is of further interest because not only can
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2. Introduction

one use cavities to study the object in the cavity, but one can also use known objects such that
the setup becomes a generator of light with certain statistical properties.
While we relied on the proposed system in this motivation, we also want to emphasize that the

adiabatic elimination is a widely applied technique. By finding an approximation that relaxes
the underlying conditions we hope that this new technique can be adapted to other systems as
well.

2.2. Summary

In the following Chap. 3 we introduce the theoretical framework of this thesis. We show how
we model the system dynamics by the driven Jaynes-Cummings Hamiltonian with dissipation
via a Lindblad master equation. Further, we outline how we obtain equations of motion in
the Heisenberg picture and explain the second-order photon correlation function. The chapter
concludes with a summary of the computational tools used to obtain the results of the later
chapters.
How to use the adiabatic elimination to approximate the system dynamics is outlined in

Chap. 4. The method reduces the problem to the subspace of the two-level system, as demon-
strated in [17]. This offers a significant simplification, as it removes the need to solve for the
cavity’s dynamics directly. Adiabatic elimination is most effective when applied to a bad cavity,
characterized by substantial cavity dissipation, minimal two-level dissipation and small drive
strength. The main limitation of this approach is that it only keeps leading order terms, there-
fore making it only applicable in some scenarios.
Our most accurate approximation, the prodiabatic elimination, is presented in Chap. 5 and

builds on the formal solution of the cavity field. This solution would require an analytic expres-
sion for the two-level dynamics at previous times to yield a definitive result, which is generally
inaccessible. To tackle this issue, we assume that the two-level operators can be expanded in
a truncated Taylor series. This leads to an analytical form for the cavity field operator, which
is influenced by both the two-level behavior and the initial state of the cavity field. Unlike
the adiabatic elimination, the Taylor series enables continued addition of corrections to the ap-
proximation, a feature unavailable in the adiabatic elimination framework. To get a final result,
techniques similar to those in the adiabatic elimination are employed, ensuring a straightforward
extension from the standard approach.
In Chap. 6 we test how the approximations of Chaps. 4 and 5 compare to standard singular

perturbation techniques with our choice being the method of multiple scales. Similar to the
adiabatic elimination it assumes different timescales affecting the problem and treats them
independently of each other. Since it is a perturbative technique, it is possible to include
arbitrarily high-order correction terms, but these terms become increasingly complicated and
do not provide much further insight. Since the first few orders do not outperform the adiabatic
elimination, we do not consider the approach to be a reasonable solution to the problem.
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3. Background

The purpose of this chapter is to provide the necessary tools to understand the upcoming
chapters. We start with a more physical approach to the considered system and will gradually
increase the amount of math in order to understand the math, as well as the physics, used
further on. Further, we use ℏ = 1 throughout the whole thesis.

3.1. The System

|1⟩
|0⟩κ

γ

ϵ κ

g |1⟩
|0⟩κ

γ

ϵ κ

g

Figure 3.1.: Sketch of the system. Light blue mirrors form the cavity, with the left one partially
transmissive and the right fully reflective. The two-level system is shown as a green
circle. We have a coherent input with strength ϵ

√
κ, the coupling between the cavity

and the two-level system is denoted by g, dissipation out of the cavity with rate κ
and two-level dissipation rate with γ.

The system shown in Fig. 3.1 consists of two mirrors that trap light between them. One mirror
is perfectly reflecting (right), while the other is slightly transmissive. The transmissive mirror
allows a coherent drive to couple to the cavity by directing a laser at its backside. Furthermore,
we would like to place an object into the cavity, in this case, a two-level system. If we follow the
path of a single incoming photon, it will first go through the left translucent mirror entering the
cavity, now it is trapped in the cavity, which means it is bouncing back and forth in between
the mirrors. Inside the cavity, it has the possibility of interacting with the two-level system. If
the photon is in the cavity, it can also be sucked up by the drive or be dissipated through the
translucent mirror. In addition, we omitted another possibility of losing photons, the two-level
system can emit a photon in a way that they are not caught by the cavity. For example, it can
emit one orthogonal to the mirrors, but since we want the emission to be restricted to a single
direction it is favorable to have this rate as close to zero as possible.
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3. Background

With a qualitative understanding of what happens in the set-up, we can connect it to a few
variables. The laser that shines into the cavity enters with the strength ϵ

√
κ, where ϵ2 is the

total incoming photon flux per unit of time. The coupling between the cavity and the two-level
system is described by the parameter g, the dissipation rate of the two-level system by γ and
the dissipation rate of the cavity by κ. One might ask why the drive strength is connected to
the dissipation rate κ; they have to be connected since a more translucent mirror would not only
increase the dissipation, due to photons escaping the cavity more easily but would also increase
the drive strength since it is easier to fill the cavity. The scaling of

√
κ can only be explained

by input-output theory, which we will not focus on here [18].
When an atom is placed in a single-mode cavity, its interaction with the electromagnetic field

is constrained to transitions resonant with the cavity mode, making it qualitatively analogous
to a two-level system interacting with the cavity field. As such, the terms atom and two-level
system will be used interchangeably during this thesis. Additionally, the cavity environment
significantly modifies the spontaneous emission of the atom. The atom experiences the Purcell
effect, where the spontaneous emission rate is enhanced by the Purcell factor

Fp =
4g2

γκ
, (3.1)

and the total resulting emission rate is increased by

Γ = γFP , (3.2)

to
γ(1 + Fp) = γ + Γ . (3.3)

The Purcell factor Fp tells us how the emission of the two-level system is taking place. Fp can be
defined as Fp =

Wcav
Wfree

, where Wi is the rate at which photons are emitted either into free space

or into the cavity [19]. Values of Fp > 1 indicate that emission into the cavity mode dominates,
while Fp < 1 implies that free-space emission is more significant. Another important parameter
to characterize cavities is the β factor, which tells us the fraction of photons emitted into the
cavity to the total emitted photons, therefore giving the probability that a photon is emitted
into the cavity. The β factor is given by

β =
Fp

Fp + 1
. (3.4)

In the course of this thesis we will be dealing with the so-called bad cavity limit, one of the
main approximations we will be considering, the adiabatic elimination, is highly dependent on
it so we want to outline what it is and why it is important. For our system the bad cavity limit
is defined by [17]

κ/γ → ∞ (3.5) γ/g → 0 (3.6) ϵ/
√
κ → 0 . (3.7)

One can see from those expressions that it is sufficient to have a big κ and a small γ. The
name of bad cavity can be misleading, as one could take the word bad by its face value and
think that this is just due to bad engineering, but this is not the case. Having a bad cavity
is a design choice and a wanted feature. Two perfectly reflective mirrors, resulting in κ = 0,
would make measurements impossible because light would never escape the cavity. By using
translucent mirrors we make the cavity bad which means it is not good at trapping light inside
of it, but just this feature makes measurements possible. Additionally, a bad cavity allows for
efficient coupling between the drive and cavity, by shining the laser at the translucent mirror we
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3. Background

are able to put photons into the system. Of course, this paragraph is a bit one-sided, in reality,
the design of a cavity depends on its intended use case, the absolute worst cavity is probably
not desirable and neither is a perfect reflective one.
With a concrete picture in mind, we can have a more mathematical view of the system. The

Hamiltonian is given by

H = ∆ca
†a+∆dσz + g

(
a†σ + σ†a

)
− ϵ

√
κ
(
a+ a†

)
, (3.8)

where ∆c,∆d are the detunings between cavity/two-level system with the drive, which are
present because this Hamiltonian is already in a rotating frame with the frequency of the drive.
The rotating frame is also the reason why the driving term is time-independent, as the technique
of moving into a rotating frame is widely applied, we have outlined how to do it in the appendix
App. A.1. Additionally, a is the bosonic cavity annihilation operator, which means a follows the
commutation relations [

a, a†
]
= aa† − a†a = 1 , (3.9)

and σi i = x, y, z are the Pauli matrices

σx =

(
0 1
1 0

)
(3.10) σy =

(
0 −i
i 0

)
(3.11) σz =

(
1 0
0 −1

)
, (3.12)

and

σ = |0⟩⟨1| =
(
0 0
1 0

)
, (3.13)

is the lowering operator of the atom. Note that σ follows the anticommutation relations{
σ†, σ

}
= σ†σ + σσ† = 1 , (3.14)

which can be confusing since we are dealing with photons, so one would suspect a commutator
instead of an anticommutator, but the nature of the two-level systems forbids it from having
multiple excitations therefore it is described by anticommutation relations. We assume the
cavity has sharp equally spaced energy levels, as can be seen by Eq. (3.8) where we essentially
assume the cavity is a quantum harmonic oscillator. Because of the single mode of the cavity,
we can assume that the atom is equivalent to a two-level system and therefore we use Pauli
matrices to describe it.
Next, we take a look at the setup without a drive i.e. ϵ = 0 and no dissipation κ = γ = 0.

The dynamics simplify to the Jaynes-Cummings model [20], which uses a linear coupling of the
cavity and two-level system with strength g

H = ∆ca
†a+∆dσz + g

(
a†σ + σ†a

)
. (3.15)

The idea behind the Jaynes Cummings model is to have a flip-flop interaction. The coupling
term in Eq. (3.15), which is proportional to g, swaps one photon back and forth between the
cavity and the two-level system. The interaction conserves the total number of excitations, as
can be seen by the fact that the Jaynes-Cummings Hamiltonian commutes with the total photon
number operator a†a+ |1⟩⟨1|.

5



3. Background

gt
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

⟨a † a⟩
⟨|1⟩⟨1|⟩

Figure 3.2.: Display of total excitation number in the cavity (blue) and two-level system (orange)
as a function of time, starting in the pure Fock state of one photon in the cavity
and none in the atom. For this simulation, we set ∆i/g = 0.

In Fig. 3.2 we see this exchange of photons from the cavity and two-level system and the
reverse, done by H = g(a†σ + σ†a). The initial state was chosen as one photon in the cavity
and none in the two-level system |1⟩cav |0⟩atom. In this case, we first move the photon out of the
cavity into the atom and then emit it back into the cavity. In addition to this simple scenario, we
want to make it more realistic by introducing dissipation to the photons in the two-level system
and cavity. But this would create a new problem since without an energy input we are always
ensured that the steady state is the vacuum state |0⟩cav |0⟩atom. The reason is there would be
an energy flow out of the system without an energy flow in, which means for long times we just
empty the cavity and two-level system. Therefore, we want to also introduce a coherent drive
with strength ϵ

√
κ, the total Hamiltonian H is given by Eq. (3.8). It is the Jaynes Cummings

Hamiltonian plus a driving term and the total dynamics are described by a Lindblad Master
equation

ρ̇ = −i [H, ρ] + κD[a]ρ+ γD[σ]ρ , (3.16)

where γ is the the dissipation rate of the two-level system and κ the dissipation rate of the cavity
and the dissipators D[•] are superoperators acting as

D[A]ρ = AρA† − 1

2

{
A†A, ρ

}
. (3.17)

3.2. Obtaining Equations of Motion

To describe our dynamics, we use time-dependent operators instead of states, hence our frame-
work is based on the Heisenberg picture. However, as we are not working with unitary dynamics,

6



3. Background

it is necessary to understand the meaning of a time-dependent operator in this context. This
requires deriving the Heisenberg equation of motion from the Lindblad master equation. To do
so, consider an arbitrary operator A〈

Ȧ
〉
=

d

dt
tr{Aρ} = tr{A d

dt
ρ}

= tr

{
−i [A,H] ρ+ κ

(
a†Aa− 1

2

{
A, a†a

})
ρ+ γ

(
σ†Aσ − 1

2

{
A, σ†σ

})
ρ

}

⇒ Ȧ = −i [A,H] + κ

(
a†Aa− 1

2

{
A, a†a

})
+ γ

(
σ†Aσ − 1

2

{
A, σ†σ

})
, (3.18)

where we mainly used the cyclic properties of the trace multiple times and assumed the operator
A not to be explicitly time dependent. Solving Eq (3.18) will give us the wanted time-dependent
operators.
It is important to note that for this type of time evolution, the product rule breaks down

d

dt
o1o2 ̸=

(
d

dt
o1

)
o2 + o1

(
d

dt
o2

)
, (3.19)

where o1 and o2 are some arbitrary operators. Note that the loss of the product rule also implies

(o1o2)(t) ̸= o1(t)o2(t) , (3.20)

which means it makes a difference to consider a product of operators as a product of two time-
dependent quantities or as a singular one. This can be a bit confusing, but remember our
differential operator is defined by Eq. (3.18). To observe the breakdown of the product rule we
consider γ = 0, therefore

d

dt
(o1o2) =− i [o1o2, H] + κ

(
a†o1o2a− 1

2

{
o1o2, a

†a
})

(3.21)

(
d

dt
o1

)
o2 + o1

(
d

dt
o2

)
= −i [o1o2, H] + κ

(
a†o1ao2 + o1a

†o2a

− 1

2

{
o1, a

†a
}
o2 −

1

2
o1
{
o2, a

†a
})

, (3.22)

if now [a(†), o1] ̸= 0 or [a(†), o2] ̸= 0, we will not end up with the same dynamics. One can also
directly see that this behavior comes from the non-unitary part, which is to be expected since
the product rule holds if we have a unitary time evolution. This can be seen by assuming we
have a unitary U to move into the Heisenberg picture, leading to

(o1o2)(t) = U †o1o2U = U †o1UU †o2U = o1(t)o2(t) , (3.23)

which follows directly from the unitarity of U . But since our considered system does not have
this nice property, we need to be very careful of how we treat the time dependencies of our
operators, especially once we consider the products of operators.

3.3. The Second Order Photon Correlation Function

In this section, we assume that the right mirror is slightly translucent, enabling the detection
of dissipated photons. This setup is crucial because photons dissipated through this mirror
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3. Background

can be distinguished from photons reflected by the drive, a distinction that would otherwise be
impossible if the dissipation occurred solely through the driven side. Furthermore, we consider
the dissipation rate through this mirror to be minimal, ensuring that its impact on the overall
cavity dynamics is negligible. This slightly changed setup can be seen in Fig. 3.3.

Figure 3.3.: Sketch as in Fig. 3.1, but with an included detector (guy with the magnifying glass)
through the right mirror, we consider this dissipation rate to be so small that its
effect on the overall dynamics is neglectable.

The central quantity of interest in this thesis is the g(2)-function, also called the second-order
photon correlation function. Consider the following scenario: a physicist takes a look at the
photons coming out of their cavity setup and asks themselves ”I just detected a photon, but
when will I detect the next one?”, knowing that they are working with something that follows
a stochastic process, they are likely to refine their question to ”I just detected a photon, how
likely is it that at time τ I will detect the next one?”. The answer this scientist is looking for is
the g(2)-function. It is a measure of how we expect light to leave our cavity, when we are likely
to measure a photon in the detector or when it is unlikely. But it gives also other insights, it is
one of the main tools to distinguish classical from non-classical light sources [4, 21]. It is defined
by

g(2)(τ) =

〈
a†(t)a†(τ)a(τ)a(t)

〉
⟨a†(t)a(t)⟩2

, (3.24)

where for future reference we will set the initial time t = 0 [18]. Since we work with density
matrices, we will replace the expectation value with a trace and further assume the initial state
to be the steady-state ρss

g(2)(τ) =
tr{a†(τ)a(τ)aρssa†}

tr{a†aρss}2
. (3.25)

Here, one might ask how to connect this formula to the earlier mentioned picture of the scientist
detecting photons. It is advantageous to first forget about the normalization, so we investigate

tr{a†(τ)a(τ)aρssa†} = tr{a(τ)aρssa†a†(τ)} , (3.26)

where we just used the cyclic property of the trace once. Now, we dissect this formula into two
parts, first, we have the aρssa

† part and the a(τ)•a†(τ) part that is applied to it. So initially,
we remove a photon out of the system, by applying a from the left and a† from the right, this
would be the first photon the scientist measures, and it also defines t = 0 of our experiment.

8



3. Background

Next, we do the same again at time τ by applying the same operator again, this is done by
using the time-dependent cavity operators. Finally, we trace this expression to obtain the total
amplitude of this process, which gives us something proportional to how likely it is to remove
another photon at time τ . It is important to note that this expression is greater than or equal
to zero, but it has no upper bound, so an interpretation through probabilities is not directly
possible. However, a high value will still give you the information that the scientist is expecting
to detect a photon. Whereas if it is close to zero, the scientist would not expect to see a photon.

Next, we want to show that in the long time limit the g(2)-function will converge to 1. For

this, we identify the normalized state ρ′ = aρssa†

tr{a†aρss} , which one can interpret as removing a

photon of the cavity at time t = 0, therefore

g(2)(τ) =
tr
{
a†(τ)ρ′a(τ)

}
tr{a†ρssa}

, (3.27)

which effectively quantifies the expectation value for removing an additional photon at time
t = τ in relation to the steady-state scenario. Evaluating the numerator of Eq. (3.27) for τ → ∞
leads to

lim
τ→∞

tr
{
a†(τ)ρ′a(τ)

}
= tr{a†ρssa} , (3.28)

directly implying
lim
τ→∞

g(2)(τ) = 1 . (3.29)

We focused on the initial state being the steady state much in this section, the reason being
that the earlier mentioned scientist can typically achieve this scenario quite easily; they set up the
system, wait for a while and then assume that the system has reached steady-state conditions.
At this point, the scientist begins to observe, detecting the first photon, which initiates the
entire process. While this is one way to measure the g(2)-function, it would be a tedious one,
typically the easier route is to detect the output of the cavity for a long time and use the time
in between each measurement to obtain the g(2)-function. This works because in principle each
measured photon can be thought of as the first detected one.

3.4. Materials and Methods

All simulations are done using the Julia programming language [22] using the QuantumOptics.jl
package [23]. Plots are done using the Makie.jl package [24], where for higher inclusion we used
the color map ’:seaborn colorblind’, which is optimized to have high contrast in color so that
the interpretations are also easy to follow for color-blind people [25, 26]. The QuantumAlgebra.jl
package [27] was also a great tool to find equations of motion of operators in the Heisenberg pic-
ture. While some calculations were performed using Mathematica [28], they could, in principle,
have been completed manually.

9



4. Adiabatic Elimination

This chapter is primarily motivated by [17], which employs the quantum Langevin equation to
analyze system dynamics. However, since our approach is based on the Lindblad master equation
given in Eq. (3.16), we follow an alternative derivation. To establish a solid foundation, we begin
with an overview of the general approach and key assumptions, providing a discussion to develop
physical intuition. We then explore the analytical insights gained from this method and compare
them with numerical simulations to assess its effectiveness.

4.1. Overview and Principles of Adiabatic Elimination

The adiabatic elimination can be a challenging method to grasp when it comes to deriving time
dynamics. To start, we assume ȧ = 0. At first glance, this might seem confusing; after all, we
aim to determine the g(2)-function, which requires an expression for a(t). But should setting
ȧ = 0 not eliminate all time dependence? The short answer is no. This is because ȧ depends
on the two-level system operators, which we do not assume to be time-independent. By setting
ȧ = 0, we derive an expression for the cavity field a as a function of the two-level system, which
remains time-dependent. Thus, a itself becomes time-dependent, indirectly capturing the time
dynamics through the two-level system. In making this assumption, we’re effectively stating
that the cavity field adapts so fast to any changes in the two-level system that it reaches steady-
state conditions instantaneously. Since this change would happen without taking any time, it is
nonphysical, but for fast adapting systems it is a reasonable assumption, yielding good results.
Under this assumption, we may use ȧ ≈ 0, redirecting our focus from the fast dynamics of the
cavity field a to the slower dynamics of the two-level system, as can be further read in [29].
This shift simplifies the problem, making it solvable in a straightforward way by focusing on
the effective dynamics of the two-level system while assuming that the cavity field continuously
equilibrates to it. These assumptions can not be true in all cases, but for our system, they be-
come justified in the bad cavity limit, defined by Eqs. (3.5), (3.6) and (3.7) for which the method
is exact. The introduction above should help the reader with a basis for the following chapter
to guide themselves on, but we will nonetheless outline whenever we use one of the described
steps and assumptions.

For starters, we need to find the equations of motion of the system operators, this is done by
employing Eq. (3.18), leading to

ȧ = −
(
i∆c +

κ

2

)
a− igσ + iϵ

√
κ (4.1)

σ̇ = −
(
i∆d +

γ

2

)
σ + igσza (4.2)

σ̇z = −2ig(σ†a− a†σ)− γ(σz + 1) . (4.3)

The non-linear coupling between a and σ, by gσza, prevents us from decoupling these equations
and thus hinders us from finding a simple analytical solution. The non-linearity means that even
small variations in one variable can significantly impact the others, making the overall behavior
hard to capture. Since the non-linear terms cause these problems we would like to remove them,

10



4. Adiabatic Elimination

for this we consider ȧ = 0, which leads to

a = aadb = −2itc
κ

(
gσ − ϵ

√
κ

)
, (4.4)

where we introduce the parameter

tc =

(
2i∆c

κ
+ 1

)−1

. (4.5)

This is the step where we assume that the cavity field equilibrates infinitely fast to the two-level
system, which lets us assume that the derivative of the cavity field vanishes. We will call this
new representation of a simply aadb, where the subscript stands for adiabatic.

Our next step is to substitute each instance of a with aadb in the equation of motion of the
two-level system, given by Eqs. (4.2) and (4.3). It is important to note, that this substitution
is not rigorously justified, as outlined in Sec. 3.2, instead products of operators must be treated
as single, time-dependent entity. This also reveals the significance of normal ordering in this
context. When replacing a with aadb, the position of aadb to the left or right of a two-level
operator can become relevant. The justification for the replacement cannot be explained without
addressing the role of noise operators, a detailed discussion on this topic is provided in Sec. 4.4.
The breakdown of commutation relations can be seen by the commutator of aadb and σ†

[aadb, σ
†] = −2itc

κ

(
g[σ, σ†]

)
=

2itcg

κ
σz ̸= 0 , (4.6)

which would be zero if we used a instead of aadb, since a used to be in a different Hilbert space
than σ†. The breakdown of commutation relations in the Heisenberg picture when using a
Lindblad Master equation is further outlined in [18].
By doing this replacement for now and shifting the discussion to Sec. 4.4 and assuming that

we are allowed to apply the commutation relations of the two-level system, we obtain a linear
system of equations in the two-level subspace

σ̇ =− 2gϵtc√
κ

σz −
(
2g2tc
κ

+
γ

2
+ i∆d

)
σ (4.7)

σ̇z =−
(
4g2

κ
Re{tc}+ γ

)
(σz + 1) +

4gϵ√
κ

(
t∗cσ + tcσ

†
)
. (4.8)

From here, we also see how we can obtain a time-dependent cavity field operator. Remember
that ȧ = 0, but we will not be using a since we replace it by aadb and from Eq. (4.7) one can
see that ȧadb ∝ σ̇ ̸= 0, which gives us the wanted time dynamics of the cavity field. To solve the
system of Eqs. (4.7) and (4.8), we first write it as a matrix equation

d

dt
v⃗(t) = Av⃗(t) ,

where we used that σ̇† = (σ̇)† and identify

A =


−
(

2g2tc
κ + γ

2 + i∆d

)
0 − 2gϵtc√

κ
0

0 −
(

2g2t∗c
κ + γ

2 − i∆d

)
− 2gϵt∗c√

κ
0

4gϵ√
κ
t∗c

4gϵ√
κ
tc −

(
4g2

κ Re{tc}+ γ
)

−
(

4g2

κ Re{tc}+ γ
)

0 0 0 0

 , (4.9)
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4. Adiabatic Elimination

with the convention

v⃗(t) =


σ(t)
σ†(t)
σz(t)
1

 . (4.10)

It is sufficient to use expectation values instead of operators in v⃗(t), as we ultimately only need
the expectation values. However, this distinction does not matter since the final results are
linear combinations of operators and applying expectation values to these expressions will yield
the same results. The system of linear equations is solved by an exponential matrix ansatz

v⃗(t) = eAtv⃗(0) , (4.11)

which gives us the final solution of the time-dependent two-level operators. This also concludes
the main steps of the adiabatic elimination, as from that solution various quantities can be
derived, including the g(2)-function.

4.2. Two-Level Dynamics

4.2.1. Effective Lindblad Master Equation

This section aims to understand the dynamics in the two-level system after the adiabatic elim-
ination was applied to the cavity. We ask the question whether there exists a Lindblad master
equation (LME) that can create the same dynamics, so the task is to find an LME which natu-
rally creates the differential equations of Eqs. (4.7) and (4.8). To reproduce those equations of
motion, we see that using a Hamiltonian

H =

(
∆d

2
+

g2Im{tc}
κ

)
σz +

2gϵi√
κ
tc

(
σ† − σ

)
, (4.12)

and a dissipator in σ creates the wanted dynamics. The total LME reads

ρ̇ = −i [H, ρ] + γ (Re{tc}Fp + 1)D[σ]ρ , (4.13)

where the Hamiltonian H is given by Eq. (4.12). We notice that after the adiabatic elimination,
the system dynamics reduce to the case of a driven two-level system that is objected to dissipa-
tion. The dissipation in σ is reasonable since we assume the cavity acts mainly like a sink, in
which it absorbs the photons that are emptied into the cavity. This is because we assume κ to
be a big parameter, as it is needed for the adiabatic elimination to work well, which implies a
fast dissipation out of the cavity. Using this picture one can see the enhanced dissipation rate
γ (Re{tc}Fp + 1). But we overlooked the other way in which the cavity can affect the two-level
system, this is by using the Jaynes-Cummings term to move a photon from the cavity into the
two-level system. This feature is captured by σ† of the drive term in Eq. (4.13). One could
argue that the Hamiltonian has an imaginary drive amplitude, but by moving into a different
frame, by σ → iσ we can again make the drive strength real and positive, but this is not done
in this chapter, as there is no further insight from that.

4.2.2. Analyzing Two-Level System Dynamics

From now on, we will assume that the drive is on resonance ∆c = ∆d = 0. In the Appendix
App. A.2 we have a further look into the eigenvalues of the Matrix A of Eq. (4.9), which leads to
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4. Adiabatic Elimination

a critical drive strength. If one exceeds this drive strength, we obtain imaginary eigenvalues of
A, therefore one expects oscillatory behavior in the expectation values of the two-level operators.
Imaginary eigenvalues are expected as soon as

ϵ√
κ
>

g

4κβ
, (4.14)

with β given by Eq. (3.4). This allows us to define the critical drive strength

ϵc =
g

4β
√
κ
, (4.15)

for drives below this value, there should not be any visible oscillations for values above we would
expect to see them. But this is only true if we assume the result of the adiabatic elimination also
captures the real dynamics. In Chap. 5 we found an even tighter bound for possible oscillations
and in Fig. 5.4 we see how increasing ϵ above the critical drive strength leads to oscillations in
the expectation value of σz.

4.3. Cavity Dynamics

4.3.1. Average Cavity Field ⟨a(t)⟩

Since we have an analytic expression for σ(t), we can also find one for aadb(t) by Eq. (4.4),
which we want to use to find an expression of the g(2)-function. But first, let us test how well
this approximation works on expectation values of a, instead of directly jumping into the case of
multiple cavity operators. We are questioning whether the initial state affects the approximation
on a and how we can tune system values for a higher alignment between numerics and the
approximation. We will obtain all expectation values of a by

⟨a(t)⟩ = ⟨aadb(t)⟩ = −2i

κ

(
g ⟨σ(t)⟩ − ϵ

√
κ
)
, (4.16)

where ⟨σ(t)⟩ is obtained through Eq. (4.11).
In the following, we assume that the initial state has no excitations, so the cavity, as well

as the two-level system, are in the vacuum state |0⟩. Our intuition tells us that the adiabatic
elimination should perform badly for early times since the vacuum state should be too far away
from the steady state, therefore we would expect that ȧ = 0 is not a reasonable assumption in
this case. But we also expect that at some point the adiabatic elimination should obtain a good
approximation since the state has to evolve into the steady state.
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Figure 4.1.: Comparison between the numerical expectation value |⟨a⟩| (dashed and gray) and
the adiabatic elimination (full and orange). For this plot we assumed an initial
vacuum state and further varied g and κ, κ variations are in A, B and g variations
in C, D. For the κ variations κ/g = 1, 15/2 in A, B and for the g variations we
used g/κ = 1/30, 8/30 in C, D. For the g variation case we used γ/κ = 1/3000
and ϵ/

√
κ = 1/10

√
30. In the case of varying κ we used γ/g = 1/200 and ϵ/

√
g =

1/10
√
2.

In Fig. 4.1, we can see how well the adiabatic elimination works for longer timescales; it
converges nicely to the numerical result after some time. We attribute this to the fact that at
this point the assumption of the cavity being close to steady-state conditions is reasonable. By
having a clear look at the subfigures C, D in Fig. 4.1, we can see that by increasing g the decay
happens more rapidly. This is due to the enhanced decay factor 2g2/κ, seen in Eq. (4.7) scaling
with g2, so a bigger g will increase the total decay rate. Next, we can look at what happens if
we increase κ; this can be seen in subfigures A, B. We argue, that the adiabatic elimination is
exact in the bad cavity limit, see [17]. Therefore, we should expect a larger κ to increase the
alignment between adiabatic elimination and numerics. In Fig. 4.1, one can see this effect, since
for larger κ the adiabatic elimination works fairly well. In subplot A we observe oscillations
in the numerics, seen by the small jumps of the gray line. We explain this by an exchange
of excitations between the cavity and two-level system, this effect can not be captured by the
adiabatic elimination. The reason for this is that the added excitation to the cavity is removed
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4. Adiabatic Elimination

instantly by the adiabatic elimination, whereas in panel A it is reabsorbed. We can always
observe a mismatch at t = 0, this is because the adiabatic elimination can not incorporate the
initial conditions of the cavity field, but only the ones of the two-level systems. By using the
vacuum as the initial state we use a state not closely related to the steady state, therefore this
initial mismatch was to be expected.
Next, we show that by choosing an initial state closely related to the steady state, the adiabatic

elimination can also work well on early timescales. For this, consider the initial state,

ρ =
aρssa

†

tr{aρssa†}
, (4.17)

which is the steady state after removing a single photon from the cavity, which we will call
photon reduced steady-state further on. This initial state is of interest, not only because it is
related closely to steady-state conditions, but also because it is the initial state when computing
the g(2)-function, see Eq. (3.25). For the following numerics, the initial values for the vector
v⃗(t) of Eq. (4.11) are obtained from the simulation. In principle, one can also obtain them from
the adiabatic elimination, but those are accompanied by the errors of this approximation, but
since we are mainly interested in the overall behavior, we will use numerics to obtain the initial
values.

gt
0 10 20 30
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|
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𝜅/g = 5/2
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𝜅/g = 10
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Figure 4.2.: Comparison between the numerical expectation value |⟨a⟩| (full) and the adiabatic
elimination (dashed). The initial state given by Eq. (4.17), we further varied κ, such
that in κ/g = 5/2, 5, 10, 15 the other system values are chosen as γ/g = 1/200
and ϵ/

√
g = 1/10

√
2.

In Fig. 4.2, we can now clearly see that for this state and increasingly high κ (lines in red and
green) the approximation captures the dynamics very well at all times, therefore our assumptions
seem to be justified. For low κ (blue) one can again see the presence of oscillations, due to the
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4. Adiabatic Elimination

exchange of photons between the cavity and two-level system, which are not captured by the
adiabatic elimination.

4.3.2. Determination of the g(2)(t)-Function

This subsection focuses on finding the g(2)-function with the initial state chosen as the steady
state, the reason for this being that in experiments one can usually assume the system to be in
a steady state and then as soon as a photon is detected one starts the constant measurement
of photons leaving the cavity. Analyzing the time between each measurement will result in the
g(2)-function. We note that the following steps are also applicable to an arbitrary initial state,
but we are mainly interested in the case of an initial steady state.
To obtain an expression of the g(2)-function, we want to start with the normalization constant〈

a†a
〉
ss
, which is given by Eq. (A.21) in the appendix, where we outlined how to obtain steady-

state values from the adiabatic elimination as well as calculated g(2)(0). Since we found this
normalization all that is left to do is find an expression of

tr{a†(0)a†(τ)a(τ)a(0)ρss} , (4.18)

to do this we first notice that we can find an operator description of a†(τ)a(τ) from the adiabatic
elimination by

a†adb(τ)aadb(τ) =

(
2

κ

)2(g2

2
(σz(τ) + 1)− gϵ

√
κ
(
σ(τ) + σ†(τ)

)
+ ϵ2κ

)
, (4.19)

where we used the identity σ†σ = 1
2(σz + 1). Note that this is the same expression as in

Eq. (A.21), but instead of steady state values, we now use the time-dependent ones, obtained
from Sec. 4.1. The g(2)-function is just the measure of the average photon number over time,
with the initial state being the normalized photon reduced steady state of Eq. (4.17). We will
further use the quantum regression theorem to obtain the g(2)-function [30]. But note that from
the form of the g(2)-function given by Eq. (4.18) we notice it would be sufficient to find an
approximation of

〈
a†(τ)a(τ)

〉
for the initial state a(0)ρssa

†(0), which is another way to obtain

the g(2)-function.
To obtain a result we need to find

〈
a†(0)a†(τ)a(τ)a(0)

〉
, but since a†adb(τ)aadb(τ) solely depends

on the two-level expectation values it is sufficient to find
〈
a†(0)σi(τ)a(0)

〉
. To achieve this we

first need to find the atom operator expectation values at time τ = 0 and then based on this we
find the time evolution by the quantum regression theorem. This is done by changing v⃗(0) to

v⃗(0) =


〈
a†σa

〉
ss〈

a†σ†a
〉
ss〈

a†σza
〉
ss〈

a†a
〉
ss

 , (4.20)

where all expectation values are obtainable from within the adiabatic elimination. We will show
how to do this for

〈
a†σa

〉
ss
, the other quantities then follow in the same manner〈

a†σa
〉
ss

=
4

κ2

〈(
gσ† − ϵ

√
κ
)
σ
(
gσ − ϵ

√
κ
)〉

ss

= −4ϵ
√
κ

κ2

〈(
gσ† − ϵ

√
κ
)
σ
〉
ss

= − 4ϵ

κ
√
κ

(g
2
(⟨σz⟩ss + 1)− ϵ

√
κ ⟨σ⟩ss

)
.

(4.21)
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Then by inserting the steady state values from App. A.3 we obtain our initial values of v⃗(0). By
further applying Eq. (4.11) together with the quantum regression theorem [30], we see that we
can find

〈
a†(0)σi(τ)a(0)

〉
through

〈
a†(0)σ(τ)a(0)

〉〈
a†(0)σ†(τ)a(0)

〉〈
a†(0)σz(τ)a(0)

〉〈
a†(0)a(0)

〉
 = eAτ v⃗(0) , (4.22)

where v⃗(0) is given by Eq. (4.20). Now we see that〈
a†(0)a†adb(τ)aadb(τ)a(0)

〉
=

(
2

κ

)2 [g2
2

(〈
a†(0)σz(τ)a(0)

〉
+
〈
a†(0)a(0)

〉)
− gϵ

√
κ
(〈

a†(0)σ(τ)a(0)
〉
+
〈
a†(0)σ†(τ)a(0)

〉)
+ ϵ2κ

〈
a†(0)a(0)

〉]
,

(4.23)

where all the expectation values are obtained from Eq. (4.22). Together with the normalization,
given by Eq. (A.21), we have all the parts to compute the g(2)-function by

g(2)(τ) =

〈
a†(0)a†adb(τ)aadb(τ)a(0)

〉
⟨a†(0)a(0)⟩2

, (4.24)

where we want to note that
〈
a†(0)a(0)

〉
=
〈
a†a
〉
ss
. A comparison of this expression to numerical

simulations of the system can be seen in Fig. 4.3.
In principle we obtained an expression of the g(2)(τ)-function, but since the resulting expres-

sion is rather long and does not give much further insight we want to display it in the low drive
limit by expanding it in ϵ up to order O

(
ϵ2
)

g(2)(τ) =
(
1− F 2

p e−
τ
2
γ(Fp+1)

)2
+O

(
ϵ2
)
, (4.25)

where one can nicely see that for τ → ∞ we will obtain g(2) = 1. In the low drive limit, we
also nicely see the dependence of the coherent decay factor Fp, which is given by Eq. (3.1).
Additionally, we can obtain a simple expression of g(2)(0) in the low drive limit, for this we
simply set τ = 0 in Eq. (4.25) and obtain

g(2)(0) =
(1− 2β)2

(1− β)4
+O

(
ϵ2
)
, (4.26)

where β is given by Eq. (3.4), this expression of g(2)(0) is the same as can be found in the
appendix in Eq. (A.28). Having an expression of g(2)(0) is of interest because it tells us when
we expect photon bunching or antibunching. Photon bunching and antibunching describe how
photons are expected to leave the cavity, photon bunching (g(2)(0) > 1) occurs when photons
leave the cavity in groups. Antibunching (g(2)(0) < 1) signifies photons leave one at a time. From
the simple expression of g(2)(0), we expect perfect bunching if β = 1 and perfect antibunching if
β = 1/2. Where we want to note that for β = 1 we would need Fp → ∞, under the assumption
of nonzero dissipation rates κ, γ, this is not accessible with a finite coupling between two-level
system and cavity.
Further on, we want to motivate the choice of the low drive limit, which allowed us to expand

the g(2)-function in orders of ϵ. One of the primary reasons for using the low drive limit is that
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a strong drive destroys coherence in the system. In quantum mechanical systems, coherence
refers to the superposition and phase relationships between states, which are fundamental for
observing quantum effects like entanglement or photon antibunching. Under strong driving con-
ditions, the external field would dominate, but since we want to observe quantum mechanical
effects the low drive limit is a reasonable assumption.

Next we want to take a look at how well the full approximation performs in comparison to
numerics. Since we start with something related to the steady state, we would expect a good fit
between approximation and full numerics.
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Figure 4.3.: Comparison between the g(2)(τ)-function between exact numerics (grey) and the full
adiabatic approximation (orange) on a linear scale in panel A and on a logarithmic
scale in panel B. System values are chosen as g/κ = 1/6, ϵ/

√
κ = 1/20

√
30.

In Fig 4.3 we can now see that the adiabatic elimination works fairly well, but we also get a
glimpse of the motivation for this project, since the adiabatic elimination does not capture the
early behavior very well. Because of this, we want to find additional terms or corrections to it,
so that in total we get a description that effectively overlaps the dashed line in Fig. 4.3. We also
see that qualitative features are missing, for example, the adiabatic elimination is not able to
capture the early and later curvature of the g(2)-function. From the log-plot, panel B in Fig. 4.3
we suspect the adiabatic elimination expects a simple exponential decay for early times, whereas
the real behavior seems to be more complex than that. Additionally, we are still restricted to
the regime of the bad cavity limit, since moving too far away from it will reduce the accuracy of
the adiabatic elimination drastically.

4.4. Limitations of Adiabatic Elimination and Importance of Normal
Ordering

This section will explain why normal ordering is so important in the framework of the adiabatic
elimination, the main steps are taken from [17]. We want to do this using the Langevin equation,
in this framework the product rule and the commutation relations hold, thus making the analysis
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4. Adiabatic Elimination

independent of the normal ordering. In our case, the Langevin equations of motion read

ȧ = −κ

2
(a− aadb) + ξ̂1 (4.27)

σ̇ = −γ

2
σ + igZa+ ξ̂2 , (4.28)

where ξ̂1 and ξ̂2 are noise operators with zero mean
〈
ξ̂1

〉
=
〈
ξ̂2

〉
= 0 and aadb = −2i/κ(gσ −

ϵ
√
κ). In principle, we are only interested in Eq. (4.27), so let’s write down the formal solution

of it

a(t) = e−
κt
2 a(0) +

κ

2

∫ t

0
dτ aadb(t− τ)e−

κ
2
τ +

∫ t

0
dτ ξ1(t− τ)e−

κ
2
τ , (4.29)

where we would like to outline that this whole equation is dependent on ξ̂2 by the aadb, so both
noise operators influence the dynamics of a. Next, we use the formal limit of κ → ∞ leading to

a(t) = aadb(t) +
2

κ
ξ1(t) . (4.30)

Neglecting the influence of the ξ̂2 operator, we can see that by using normal ordered operators,
which means creation operators are to the left and annihilation operators are to the right, we
are ensured that ξ̂1 acts on the vacuum bath state |0⟩b, as well as ξ̂

†
1 acts on ⟨0|b. We show this

on the basis of a†(t)a(t)〈
a†(t)a(t)

〉
κ→∞
= ⟨0|b ⟨Ψ0|

(
a†adb(t) +

2

κ
ξ†1(t)

)(
aadb(t) +

2

κ
ξ1(t)

)
|Ψ0⟩ |0⟩b (4.31)

= ⟨0|b ⟨Ψ0| a†adb(t)aadb(t) |Ψ0⟩ |0⟩b , (4.32)

where |Ψ0⟩ is the initial system state and |0⟩b is the bath vacuum state. In the transition from
the first to the second line, we used the fact that ξ1(t) |0⟩b = 0. Here we want to note that this
procedure works as well for larger products on cavity field operators. Let Σ be an arbitrary
atom operator, for which we want to compute〈(

a†
)n

Σ(a)m
〉

κ→∞
=

〈
a†adb

(
a†
)n−1

Σ(a)m−1aadb

〉
=

〈(
a†
)n−1

a†adbΣaadb(a)
m−1

〉
...

=
〈(

a†adb

)n
Σ(aadb)

m
〉
,

(4.33)

where n and m are integers, in this derivation we immediately dropped the noise operators,

since they act on the vacuum as in Eq. (4.32). Additionally, we used that a
(†)
adb is an operator

in the two-level subspace and therefore commutes with a(†). If we use normal ordered operators
we see that it is applicable to use

a(t) = aadb(t) , (4.34)

which is in principle the same expression as we used during the whole chapter.
But this opens a brand-new question, if the noise operators drop out in the Langevin approach,

why did we obtain a mismatch between adiabatic elimination and numerics for g(2)(0) seen in
Fig. A.1. If one does not use κ → ∞, the formal solution of Eq. (4.29) will have a contribution
to a†a in the form of ∫ t

0

∫ t

0
dτ ′ dτ a†adb(t− τ)aadb(t− τ ′)e−

κ
2
(τ+τ ′) . (4.35)
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4. Adiabatic Elimination

See that in the adiabatic elimination we would use

a†adb(t)aadb(t) , (4.36)

as a representation of a†a. But from the exact result, we obtained an integral in which also
past times are taking effects. Therefore, the adiabatic elimination can also fail for steady state
expectation values, for which one would apply the limit t → ∞.
To summarize, in the Langevin approach commutation relations, hold so that we can either

use normal ordering or not, both are valid options. However under the formal limit of κ → ∞,
when using normal ordering we can drop the noise terms, which gives us an expression of the
cavity field operator that coincides with Eq. (4.4). Therefore we conclude that the adiabatic
elimination is a reasonable approximation if one uses normal ordered operators and a large cavity
dissipation rate κ.
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5. Prodiabatic Elimination

This section introduces the prodiabatic elimination, a technique developed to address the limita-
tions of the adiabatic elimination. As a concrete application, we aim to achieve a more accurate
approximation of the g(2)-function. To this end, we first derive a new expression for the cavity
field operator a. Using this expression, we propose a novel approach to solving the two-level
dynamics, resulting in a significant improvement over the adiabatic elimination. In this chapter,
we restrict our analysis to the case of a resonant drive ∆c = ∆d = 0.

5.1. General Procedure of the Prodiabatic Elimination

5.1.1. Obtaining the Cavity Field Operator

To start things off we formally solve Eq. (4.1), which we rewrite to

ȧ = −κ

2
(a− aadb) , (5.1)

where aadb = −2i/κ(gσ − ϵ
√
κ) is defined by the two-level system operators, here we want to

note that σ(t) is not given by Eq. (4.11), but is so to be determined further on. Formally solving
Eq. (5.1) will lead to

a(t) = e−
κt
2 a(0) +

∫ t

0
dτ

κ

2
aadb(τ)e

κ(τ−t)
2 . (5.2)

Notice that Eq. (5.2) is dependent on an integral involving aadb(τ), which is a problem since
one would need to solve the other non-linearly coupled two-level system differential equation to
evaluate it. To make further progress we substitute τ ′ = t− τ in the integral of Eq. (5.2)

a(t) = e−
κt
2 a(0) +

∫ t

0
dτ ′

κ

2
aadb(t− τ ′)e−

κτ ′
2 . (5.3)

Next, we will apply a Taylor expansion in τ ′ around τ ′ = 0 on aadb(t− τ ′), leading to

aadb(t− τ ′) = aadb(t)− ȧadb(t)τ
′ +

d2taadb(t)

2
τ ′2 +O(τ ′3) , (5.4)

with dt indicating a total derivative with respect to t. Note that this expansion needs σ(t) to
be an analytic function, otherwise, the expansion in the form of a Taylor series is not justified.
But in the presence of noise σ̇ ∝ ξ̂1 and since ξ̂1 is a stochastic operator we cannot differentiate
it. This becomes a problem as soon as we want to include terms like d2taadb, as there is the
second derivative of σ(t) involved, for which we would need dtξ̂1, which does not exist. But in
our case, we are not dealing with any noise terms so the expansion should be justified. In the
presence of noise, one needs an argument as to why the noise is negligible, similar to what we
did in Sec. 4.4, once the noise is argued away the same steps as further on can be taken.
The Taylor expansion is a crucial step as it allows us to pull aadb(t) and its derivatives out of

the integral of Eq. (5.3), which removes the need to find an expression of the two-level dynamics
and makes the integral solvable in a straight forward manner. Next, we want to truncate the
expansion because we argue that the neglected terms are of higher order in 1/κ. This can be seen
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5. Prodiabatic Elimination

by the first substituting the Taylor expansion of Eq. (5.4) into the formal solution of Eq. (5.3)
leading to

a(t) =a(0)e−
κt
2

+ aadb(t)
(
1− e−

κt
2

)
+

1

κ
ȧadb(t)

(
−2 + e−

κt
2 (2 + κt)

)
+

1

4κ2
d2taadb(t)

(
8− e−

κt
2 ((κt+ 2)2 + 4)

)
+O

(
1/κ3

)
,

(5.5)

where we will be now neglecting the term proportional to d2taadb(t) as it involves higher orders
in 1/κ, with the same reasoning we also drop the O(1/κ3) part. Note that we cannot truncate
the expansion at Eq. (5.4), as τ ′ might be a large parameter, but since 1/κ is generally very
small, truncating the series at this point is justified. This results in our approximation being

apdb(t) = a(0)e−
κt
2 + aadb(t)

(
1− e−

κt
2

)
+

1

κ
ȧadb(t)

(
−2 + e−

κt
2 (2 + κt)

)
, (5.6)

which is equivalent to

apdb(t) = a(0)e−
κt
2 − 2i

κ

(
gσ(t)− ϵ

√
κ
)
(1− e−

κt
2 )− 2ig

κ2
σ̇(t)

(
−2 + e−

κt
2 (2 + κt)

)
, (5.7)

so we can again approximate the cavity operator based on the two-level dynamics. This new
expression of a(t) will be labeled by pdb, standing for prodiabatic.

In the limit of t → ∞ we obtain

lim
t→∞

apdb(t) = lim
t→∞

aadb(t) , (5.8)

where we assumed that the derivative of σ vanishes for long times. This result is nice since we
know that aadb will yield satisfying results in the long time limit. But one problem still remains;
we do not have an expression for aadb(t). One could think we could use the result obtained in
Chap. 4, but this will not work, since the adiabatic elimination is not suited for approximating
σ̇ at early times, therefore leading to a significant error in ȧadb. We outlined this further in the
discussion of Fig. 5.6. Additionally, we would restrict the validity of our solution again to the
limitations of the adiabatic elimination. Therefore we will propose a new method to obtain the
two-level dynamics.

5.1.2. Obtaining the Two-Level Dynamics

This section will show how we obtain an expression of aadb(t), for this we start by assuming that
we may replace a(t) by

a(t) ≈ aadb(t)−
2

κ
ȧadb(t) = −2i

κ

(
gσ(t)− ϵ

√
κ
)
+

4ig

κ2
σ̇(t) , (5.9)

which one obtains by assuming κt ≫ 1 therefore all the exponential functions of Eq. (5.6) decay
to zero, leading to the above. The assumption remains that the two-level dynamics are the slow
ones and the cavity is quickly adapting to these changes, which is reasonable if κ is large. Notice
that a(t) of Eq. (5.9) is only in the two-level subspace, similar to the adiabatic elimination, as
outlined in Chap. 4. In contrast to that, our expression is also dependent on a derivative; this
is a consequence of going one order beyond the adiabatic elimination. To solve the two-level
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5. Prodiabatic Elimination

dynamics we will use Eq. (5.9) and based on it we can find an approximation of σ(t). Once we
found an expression of σ(t) we also get an expression on σ̇(t), which then gives us all the parts
of apdb, see Eq. (5.7).
We start with the equation of motion of σ(t), by inserting Eq. (5.9) we obtain

σ̇ = −γ

2
σ + igσza

= −γ

2
σ + igσz

(
aadb(t)−

2

κ
ȧadb(t)

)
= −

(
γ

2
+

2g2

κ

)
σ − 2gϵ

√
κ

κ
σz −

4g2

κ2
σzσ̇ ,

(5.10)

which is equivalent to (
1 +

4g2

κ2
σz

)
σ̇ = −

(
γ

2
+

2g2

κ

)
σ − 2gϵ

√
κ

κ
σz . (5.11)

To treat the
(
1 + 4g2

κ2 σz

)
correctly we propose a simple inversion of it. For this notice

(
1 +

4g2

κ2
σz

)−1

=
κ2

κ4 − 16g4
(
κ2 − 4g2σz

)
, (5.12)

where we obtained this by first writing everything in matrix form and inverting the matrix(
1 +

4g2

κ2
σz

)−1

=

(
1 + 4g2

κ2 0

0 1− 4g2

κ2

)−1

=

(
κ2

κ2+4g2
0

0 κ2

κ2−4g2

)
, (5.13)

by then representing this matrix by σz and 1 you will obtain Eq. (5.12). This allows us to

remove the
(
1 + 4g2

κ2 σz

)
by multiplying its inverse from the left

σ̇ =
κ2

κ4 − 16g4
(
κ2 − 4g2σz

)(
−
(
γ

2
+

2g2

κ

)
σ − 2gϵ

√
κ

κ
σz

)
=−

κ
(
γκ+ 4g2

)
2κ2 − 8g2

σ − 2gϵ
√
κκ3

κ4 − 16g4
σz +

8g3ϵ
√
κκ

κ4 − 16g4
,

(5.14)

now since we have an expression of σ̇ we can use this in Eq. (5.9), such that now this represen-
tation of a has no derivatives anymore, but is only a linear combination of two-level operators.
Notice that there is an underlying assumption in Eq. (5.14), since for κ = 2g we would divide by
zero further if κ < 2g we will obtain a positive decay rate, meaning exponential growth in σ(t),
which would not only contradict the existence of a steady state but would also make | ⟨σ⟩ | > 1
possible which is impossible for normalized states. Therefore we will generally assume κ > 2g,
as this leads to the wanted decay.
Next, we find a linearized differential equation of σ̇z this is accomplished by again replacing

a(t) by Eq. (5.9) and by replacing σ̇ by Eq. (5.14), thus we will obtain

σ̇z = −2ig
(
σ†a− a†σ

)
− γ(σz + 1)

= −2ig

(
σ†aadb − a†adbσ − 2

κ

(
σ†ȧadb − ȧ†adbσ

))
− γ(σz + 1)

= −
κ
(
γκ+ 4g2

)
κ2 − 4g2

(σz + 1)− 4gϵ
√
κκ

4g2 − κ2
(σ + σ†) .

(5.15)
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Similar to Chap. 4, with the differential equations of σ̇ and σ̇†, we obtain a linear system of
equations of the form ẋ = Ax, which is easily solved by an exponential matrix ansatz. For this
we define the matrix

A =


−κ(γκ+4g2)

2κ2−8g2
0 −2gϵ

√
κκ3

κ4−16g4
8g3ϵ

√
κκ

κ4−16g4

0 −κ(γκ+4g2)
2κ2−8g2

−2gϵ
√
κκ3

κ4−16g4
8g3ϵ

√
κκ

κ4−16g4

4gϵ
√
κκ

κ2−4g2
4gϵ

√
κκ

κ2−4g2
−κ(γκ+4g2)

κ2−4g2
−κ(γκ+4g2)

κ2−4g2

0 0 0 0

 , (5.16)

which solves the system of equations by
σ(t)
σ†(t)
σz(t)
1

 = eAt


σ(0)
σ†(0)
σz(0)
1

 . (5.17)

By expanding Eq. (5.16) in orders up to 1/κ the leading order terms will result in Eq. (4.9),
again displaying the connection to the adiabatic elimination and showing our inclusion of higher
order effects. This concludes the main steps of the prodiabatic elimination. We obtained a
simple representation of aadb and ȧadb, inserting these expressions into Eq. (5.6) will give the
full expression of for apdb(t). We say this is an improvement to the adiabatic elimination since
it does not only include aadb but also includes derivative terms as ȧadb. A notable improvement
over the adiabatic elimination can be observed, for instance, in Fig. 5.1.

We want to end this section by giving a brief overview of all the steps we took to end up with
a new approximation of the cavity field operator, a list of them can be seen below.

Steps to Perform Prodiabatic Elimination

1: Formally solve ȧ

2: Taylor expand aadb(t− τ) in τ around τ = 0

3: Assume κt ≫ 1 to simplify apdb(t)

4: Replace each a by simplified apdb(t) in equations of motions of two-level system

5: Linearize the equations by inverting
(
1 + 4g2

κ2 σz

)
6: Solve two-level dynamics by an exponential matrix ansatz

7: Use two-level solution to obtain full apdb(t)

5.2. Two-Level System

5.2.1. Effective Lindblad Master Equation

As done in Chap. 4 we would like to represent the equations of motion of the two-level system
by a Lindblad master equation (LME) since an LME will give a lot of insight into what happens
effectively in the two-level system. It turns out that it is possible to find a master equation
(ME) such that it reproduces Eqs. (5.14) and (5.15). Finding this ME is not a trivial task,
we provide a derivation in App. A.4. Here we only present the full ME, which reproduces the
results of the prodiabatic elimination and expand it in terms of 1/κ and low drive strengths ϵ.
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Both expansions yield Lindblad-form master equations, as all rates remain positive, ensuring
trace preservation and complete positivity. In contrast, the full ME includes a negative rate,
violating these properties.
We start by outlining the full ME, for this we display the rates

γ1,2 =
γ

2

(1 + Fp)(1 +
γ
κFp)±

√
8ϵ2γ
κ2 F 3

p + (1 + Fp)2(1 +
γ
κFp)2

1−
(γ
κFp

)2 , (5.18)

based on this, the total master ME is given by

ρ̇ = −i[H, ρ] +
∑
i=1,2

γi

1 + 2ϵ2κ
γ3

κ3
F 3
p

(1− γ2

κ2
F 2
p )

2γ2
i

D

σ +
2
(γ
κFp

)
gϵ(

(1−
(γ
κFp

)2)
κ1/2γi

σz

 ρ . (5.19)

with the Hamiltonian

H = − igϵ√
κ

2 + γ
κFp

1−
(γ
κFp

)2 (σ − σ†) . (5.20)

Now we want to roughly interpret this master equation. Notice that the numerator of the rates
γ1,2 is of the form x ±

√
y + x2, where both x and y are positive variables, therefore γ2 will

always be negative. Further on we can interpret the rates γ1,2, first of all, we want to know

when the negative rate is comparably big, this is once ϵ2γ
κ2 F

3
p = 64g6ϵ2

γ2κ5 becomes a large quantity.
This could be achieved by having a large coupling g, small rates γ and κ, while using a big drive
strength ϵ. Usually, we can assume large coupling and small dissipation rate γ, but having a
large drive while simultaneously using a low cavity dissipation rate is not considered; we want
the cavity dissipation rate κ to stabilize the cavity field implying a large dissipation and a low
drive ϵ. Further κ is limited by the condition κ > 2g, which we need to avoid divergences, so we
can not consider an arbitrary low κ within this theory anyway. Therefore we will typically have
ϵ2γ
κ2 F

3
p ≪ 1 this implies γ2 = 0, therefore we conclude that the negative rate is typically close to

0 and is not affecting the overall dynamics too much. By assuming the same on γ1 we obtain

γ1 = γ
1 + Fp

1− γ
κFp

, (5.21)

which closely resembles the results of the adiabatic elimination.
Next, we have to discuss the new dissipator. We would expect the dissipation to be solely

in σ, but surprisingly in the ME of Eq. (5.19) we also have a part that is proportional to σz.
First, notice that the dissipation is still dominated by σ, the part proportional to σz is a small
disturbance to it. In Eq. (5.25) one can see the expansion for low ϵ, where under typical system
values this prefactor of the σz term in the dissipation is a small parameter. We can further
interpret this by having a look at the dissipator in the more simple form D[σ + ξσz], where
in our case ξ is a real-valued and typically small parameter. The jump associated with this
operator on the pure state |1⟩⟨1| is

(σ + ξσz) |1⟩⟨1|
(
σ† + ξσz

)
= |0⟩⟨0|+ ξ2 |1⟩⟨1|+ ξ (|1⟩⟨0|+ |0⟩⟨1|) , (5.22)

where we can represent this state by the unnormalized Bloch vector
(
2ξ, 0, ξ2 − 1

)
= (x, y, z).

Notice that under the assumption of a small ξ, this implies our state did not get fully mapped
to the ground state |0⟩, corresponding to the Bloch vector (0, 0,−1) and we also have a small
x-component of the state. We speculate that this is due to the following; the two-level system
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emits a photon into the cavity, which alters the cavity field and this change in the cavity field
subsequently influences the two-level system again. This leads to the two-level system not fully
decaying into the ground state, but this interpretation is purely speculative and we are unsure
if that is the right way to think about the dissipator. Note that in the last two paragraphs, we
argued that the proportionality of σz of the dissipator, is a small effect, so one might think it is
acceptable to neglect it. But this is not the case, as this is part of the improvement compared
to the adiabatic elimination, as will be seen further on.

Expanding the LME in the limit of large κ, we can verify that we obtained a result beyond
the adiabatic elimination. Expanding all terms up to O(1/κ2) we obtain

H = −2igϵ√
κ
(σ − σ†) , (5.23)

and the master equation

ρ̇ = −i[H, ρ] + γ
(
1 + Fp +

γ

κ
Fp

)
D [σ] ρ . (5.24)

These results align with Eq. (4.13) but go one order beyond them with the decay rate enhanced
further than in the adiabatic elimination. The general structure is the same as the adiabatic
case, therefore the interpretation is the same as the LME of the adiabatic elimination, for the
interpretation of this LME we refer to Sec. 4.2.1.
Since the drive is typically small, we aim to further also expand the master equation in orders

of ϵ. This is achieved by expanding the prefactors of the dissipators as well as the jump operators
of the dissipator of Eq. (5.19). It is important to note that this expansion is not strictly rigorous,
as it includes terms up to order ϵ2 in the dissipator, while our overall expansion is limited to
order ϵ. However, given the assumption of a relatively small drive, we argue that the effect of
the ϵ2 terms is minimal. The reason for avoiding a fully rigorous expansion is that it would
result in additional terms that cannot be expressed in the standard Lindblad master equation
form. These terms would go beyond the typical unitary or dissipative contributions. Expanding
in this manner, we find that the Hamiltonian is linear in ϵ, meaning the expansion does not
alter its form. Consequently, the Hamiltonian remains as given in Eq. (5.20). While it is still a
driving term, its amplitude is more complex than in the adiabatic elimination or the simple 1/κ
expansion. The total LME reads

ρ̇ = −i[H, ρ] + γ
1 + Fp

1− γ
κFp

D
[
σ +

2gϵ
√
κFp

κ2(1 + Fp)(1 +
γ
κFp)

σz

]
ρ , (5.25)

With Fp given by Eq. (3.1), we observe that for large κ, the results of the adiabatic elimination
are recovered, for example, see that if Fpγ/κ ≪ 1, the decay rate matches that of the adiabatic
elimination. We also want to highlight the prefactor of σz in the dissipator, as the primary effect
remains the dissipation in σ. The σz component of the dissipator is scaled by 1/κ3/2 as well as
by ϵ, suggesting that this prefactor is small for typical system parameters; however, its effect is
non-negligible as we will show in the discussion of Fig. 5.1.
Next, we compare the previously derived master equations with numerical results as well as the

outcomes of the adiabatic and prodiabatic eliminations. Since the LMEs are valid only within
the two-level system, we need to use a slightly different initial state than usual. Specifically, we
obtain the photon-reduced steady state from Eq. (4.17) using numerical methods and then trace
out the cavity, resulting in a state defined solely within the two-level system.
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Figure 5.1.: Comparison between the different LMEs of each approximation, in A | ⟨σ⟩ | and in B
⟨σz⟩. In orange the adiabatic elimination, in blue the full prodiabatic elimination, in
green the prodiabatic elimination but expanded up to order 1/κ2 given by Eq. (5.24),
in red the expansion in ϵ given by Eq. (5.25) and in gray the numerics. For the initial
state, we chose the partial traced photon reduced state for all two-level LMEs and
the full photon reduced state for the numerics, given by Eq. (4.17). System values
are chosen as γ/κ = 1/800, g/κ = 1/4 and ϵ/

√
κ = 1/6

√
2, the coherent decay

factor equates to Fp = 200.

In Fig. 5.1, we observe the main differences between the approximations. First, the expansion
in the drive closely matches the result of the prodiabatic elimination, with only small, barely
noticeable differences. Secondly, the expansion in orders of 1/κ in Eq. (5.24) matches well with
the result of the adiabatic elimination. This agreement is expected, as Fp is large in this case
and γ/κ small, therefore the second order correction has no big effect. Additionally, note that
terms like Fp are of order 1/κ so they have to be small otherwise truncating the expansion is
not justified. But in our case, Fp is a large quantity, therefore we are not justified to truncate
the expansion in 1/κ. But if 1/κ is so large that the expansion is justified there is no difference
between adiabatic or prodiabatic elimination.
We can also observe the impact of including a term proportional to σz in the dissipator. In the

example shown in Fig. 5.1, we use γ
κFp = 1

4 , which is relatively small. Consequently, the rates
of the ϵ expanded and 1/κ expanded LMEs do not differ significantly. However, they employ
different dissipators, and the inclusion of the σz term appears to yield significantly improved
results. This improvement is notable, as the σz contribution represents only a small fraction
of the total dissipation. Finally, we emphasize that the simulations were performed under a
comparably high drive, which can be seen by ϵ/

√
κ = 1/6

√
2, while the bad cavity limit would

require ϵ/
√
κ ≪ 1. This supports the validity of the ϵ expansion, even for relatively high drive

values.
To observe a breakdown of the prodiabatic elimination and the ϵ expansion of the full ME we

need to consider an even larger driving strength ϵ and κ close to 2g. This can be seen in Fig. 5.2,
where we observe the ϵ expansion LME breaking down, which means it no longer aligns with
the results of the prodiabatic elimination, which is to be expected for larger driving strengths.
Additionally, the prodiabatic elimination is also failing, as it is no longer able to predict the
numerical two-level system dynamics adequately.
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Figure 5.2.: Comparison between the different LMEs of each approximation, in A | ⟨σ⟩ | and in B
⟨σz⟩. In orange the adiabatic elimination, in blue the full prodiabatic elimination, in
green the prodiabatic elimination but expanded up to order 1/κ2 given by Eq. (5.24),
in red the expansion in ϵ given by Eq. (5.25) and in gray the numerics. For the
initial state, we chose the partial traced photon reduced state for all two-level LMEs
and the full photon reduced state for the numerics, given by Eq. (4.17). System
values are chosen as γ/κ = 1/800, g/κ = 3/8 and ϵ/

√
κ = 1/4, the coherent decay

factor equates to Fp = 450. By decreasing κ, while simultaneously increasing ϵ the
prodiabatic elimination fails and additionally is not coinciding with the ϵ expanded
LME anymore.

5.2.2. Steady State

The prodiabatic elimination also gives us a way of obtaining the steady state values, by simply
taking the limit of t → ∞. To do this we diagonalize the matrix A of Eq. (5.16) and see that
all eigenvalues have a real part ≤ 0, if 2g < κ. Next, we find a transition matrix S such that

S−1AS = Adiag , (5.26)

where Adiag is the diagonal form of the matrix A, with the eigenvalues on its diagonal. Therefore,
the calculation is simplified by seeing that in the long time limit, we obtain

lim
t→∞

eAt = lim
t→∞

SeAdiagtS−1 = S
(
lim
t→∞

eAdiagt
)
S−1 , (5.27)

where in this limit all elements go to zero except for the one with the zero eigenvalue, which is
the constant part. This is to be expected, since otherwise we would find that the steady-state
values depend on the initial values, but this cannot be the case since we have a unique steady
state. Another way to obtain the steady-state expectation values of the two-level system is by
setting the derivatives in Eqs. (5.14) and (5.15) to zero and solving the resulting linear system
of equations. Further, we can also compare this result directly to the adiabatic elimination, a
comparison of the two-level steady state expectation values can be seen in Fig. 5.3. For the

28



5. Prodiabatic Elimination

prodiabatic elimination we obtain

⟨σ⟩ss =
4g

√
κϵ
(
4g2 + κ2

) (
γκ+ 4g2

)
(4g2 + κ2) (γκ+ 4g2)2 + 32g2κ3ϵ2

(5.28)

⟨σz⟩ss = −1 +
32g2κϵ2

(
4g2 + κ2

)
(4g2 + κ2) (γκ+ 4g2)2 + 32g2κ3ϵ2

. (5.29)
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Figure 5.3.: Comparison between the different estimations of the steady state value of | ⟨σ⟩ss | in
A and ⟨σz⟩ss in B as a function of the dissipation rate κ. In orange adiabatic elim-
ination, in blue prodiabatic elimination and in gray the numerical results. System
values are chosen as γ/g = 1/200 and ϵ/

√
g = 1/2

√
2.

It is important to note that in Fig. 5.3 we used a relatively high drive, the reason for this
is simply that just then the discrepancies in the higher order terms become relevant, as can be
seen in for example Fig. 5.4 where for increasing ϵ the adiabatic elimination seemed to under-
estimate ⟨σz⟩ss. We again notice a strict improvement of the prodiabatic elimination compared
to adiabatic elimination. One might ask why in panel B for κ = 0 we obtain ⟨σz⟩ss = −1, in
this case, there is no cavity dissipation so it seems counterintuitive that the atom will have the
vacuum state |0⟩ as steady state. The reason for this is that the total drive strength is ϵ

√
κ = 0

at this point, but the dissipation rate γ of the two-level system is still present, because of this
we expect to empty both cavity and two-level system at this point.

Next, we want to expand the atom expectation values for small drives, giving us a qualitative
insight into how this new approach compares to the adiabatic elimination. Expanding ⟨σ⟩ss and
⟨σz⟩ss in both approximations leads to

Prodiabatic elimination Adiabatic elimination

⟨σ⟩ss =
4g

√
κϵ

γκ+4g2
− 128ϵ3(g3κ7/2)

(4g2+κ2)(γκ+4g2)3
+O

(
ϵ5
) 4g

√
κϵ

γκ+4g2
− 128ϵ3(g3κ3/2)

(γκ+4g2)3
+O

(
ϵ5
)

⟨σz⟩ss = −1 + 32g2κϵ2

(γκ+4g2)2
− 1024ϵ4(g4κ4)

(4g2+κ2)(γκ+4g2)4
+O

(
ϵ5
)

−1 + 32g2κϵ2

(γκ+4g2)2
− 1024ϵ4(g4κ2)

(γκ+4g2)4
+O

(
ϵ5
)
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where we see, that the prodiabatic elimination aligns with the adiabatic elimination up to order
O
(
ϵ2
)
but in the higher order terms we obtain a difference. This discrepancy is scaled by 1/κ

which is a small parameter in the context of the bad cavity limit, however, those terms become
relevant as soon as this assumption is relaxed.

5.2.3. Analyzing the Two-Level System Dynamics

Here we want to know if we can find a similar expression for the condition of oscillations as in
Chap. 4. For this, we first find the eigenvalues of the matrix A of Eq. (5.16)

E1 = 0 (5.30)

E2 = −
κ
(
γκ+ 4g2

)
2κ2 − 8g2

(5.31)

E3, E4 = −3κ
γκ+ 4g2

4 (κ2 − 4g2)
∓ κ

√
(4g2 + κ2)

(
(4g2 + κ2) (γκ+ 4g2)2 − 256g2κ3ϵ2

)
4(κ4 − 16g4)

, (5.32)

E3, E4 can have imaginary parts if the part under the square root becomes negative. This is the
case if the drive strength fulfills

ϵ√
κ
>

g

4κβ

√
γ

κ

β

1− β
+ 1 , (5.33)

where β is given by Eq. (3.4), this expression allows us to define a critical drive strength

ϵc =
g
√
κ

4κβ

√
γ

κ

β

1− β
+ 1 . (5.34)

In Chap. 4 we obtained very similar results given by Eqs. (4.14) and (4.15). We notice that for
γ/κ → 0 we recover the results of the adiabatic elimination. In contrast, our solution is always
bigger than the one obtained from the adiabatic elimination, but since we are searching for a
lower bound this does not mean the old result is wrong, it just hints that there exist even tighter
bounds, for which we found one example. A comparison for different drive strengths can be
seen in Fig. 5.4, where we can see the presence of oscillations when exceeding the critical drive
strength.
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Figure 5.4.: Plot of the expectation value of ⟨σz⟩ for multiples of ϵc, given by Eq. (5.34), dashed
adiabatic elimination, dotted prodiabatic elimination and in solid full numerics of
the model. The evolution starts in the vacuum state of the cavity |0⟩ and a single
excitation |1⟩ in the two-level system. System values are chosen as g/κ = 1/10 and
γ/κ = 1/2000.

In Fig. 5.4 we see an increased drive strength will be able to result in oscillations in the
expectation values of σz. The presence of oscillation is already observable by the eye at twice
the critical drive strength, this can be seen as the green line is below its final value at around
κt ≈ 60. We also notice that the prodiabatic elimination results in a more robust approximation
for higher drives than the adiabatic elimination, as it is still able to obtain reasonable results
for ϵ = 5ϵc and ϵ = 10ϵc, whereas the adiabatic elimination seems to slowly break down at this
point.

5.2.4. Numerical Comparisons

In this section, we compare the results obtained from the prodiabatic elimination to the results
from the adiabatic elimination as well as to full numerical simulations. Since we again use a
long time limit it is interesting to check the dependence on the initial state. The two contenders
of initial states are the vacuum state and the photon-reduced steady state of Eq. (4.17). In the
case of the photon-reduced steady state, we use the numerics to obtain the initial conditions for
the adiabatic and the prodiabatic elimination.
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Figure 5.5.: Plot of | ⟨σ⟩ | for varying κ, in orange adiabatic elimination, blue prodiabatic elim-
ination and in gray the full numerics. A, B start in the vacuum state |0⟩ |0⟩ and
C,D start in photon reduced state of Eq. (4.17). System values are κ/g = 4 for A,
C and κ/g = 8 for B, D, the others are chosen as ϵ/

√
g = 1/10 and γ/g = 1/100.

By assuming an initial state that is related to the steady state we can enhance the accuracy
of the approximation, as can be seen in Fig. 5.5 panels C, D, while using one that is not we
decrease it, see panel A, B. Additionally increasing κ has the same effect as in the adiabatic
elimination, with a definitive improvement visible in both the photon reduced as well we the
vacuum case.
At this point we can explain why we did not use the adiabatic elimination to approximate

aadb(t) and ȧadb(t) of the prodiabatic approach. In principle Eq. (4.7) provides an expression of
ȧadb(t) solely based on the two-level dynamics, which we are able to obtain from the adiabatic
elimination. Further Eq. (4.11) gives us an expression of aadb(t). Therefore we would be able to
find the full expression of apdb of Eq. (5.7) in the framework of the adiabatic elimination. We can
already guess why we did not use this approach from panel C, D in Fig 5.5, since for early times
the adiabatic elimination seems to stay too long at too low values, therefore underestimating the
derivative. The opposite can be said for long times, where it is still growing when the numerics
have stabilized to a certain value. We show that it would not be smart to use the adiabatic
elimination in this way for the prodiabatic elimination by a qualitative comparison of σ̇ of the
different approximations and numerics. For the expressions of σ̇ we will use Eqs. (4.7), (5.14)
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and (4.2), where the first two can be obtained from their respective approximation and the last
one from full numerics. The comparison can be seen in Fig. 5.6, where we again assumed the
initial state to be the photon-reduced one since it is directly related to the g(2)-function.
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Figure 5.6.: Plot of | ⟨σ̇⟩ | for varying κ, orange adiabatic elimination, blue prodiabatic elimina-
tion and in gray full numerics. Evolution starting in the in photon reduced state of
Eq. (4.17). System values are κ/g = 4 for A and κ/g = 8 for B, others chosen as
ϵ/
√
g = 1/10 and γ/g = 1/100.

In Fig. 5.6 panel A we notice that the results of the adiabatic elimination are not well suited
for an approximation of σ̇, as there is a big mismatch at early times. Using the adiabatic
elimination to directly approximate ȧadb ∝ σ̇ would lead to a decrease in the accuracy of the
cavity field approximation of the prodiabatic result. This is since early timescales will be affected
very much by this mismatch. This can be seen by the scaling of how aadb and ȧadb enter into
the total expression of apdb, given by Eq. (5.6). Assuming κ is large, 1− exp(−κt/2) will quickly
decay into 1, while −2 + exp(−κt/2)(2 + κt) will decay to −2, therefore it is crucial to get a
good estimation of the derivative at early times, otherwise it could decrease the overall accuracy
of the approximation.

5.3. Cavity Dynamics

5.3.1. Steady State

In this section, we want to show how we compute steady-state expectation values involving the
cavity field operator. For the steady state the assumption of κt ≫ 1 has to hold therefore we
will use Eq. (5.9) as an approximation of a. For expectation values involving multiple a we just
replace each of them and use the two-level commutation relations. We demonstrate how to do
this based on

〈
a†a
〉
ss〈

a†a
〉
ss

=

〈(
a†adb −

2

κ
ȧ†adb

)(
aadb −

2

κ
ȧadb

)〉
ss

=
〈
a†adbaadb

〉
ss
+

4

κ2

〈
ȧ†adbȧadb

〉
ss
− 2

κ

〈
ȧ†adbaadb + a†adbȧadb

〉
ss

,

(5.35)

since aadb and ȧadb are in the two-level subspace, we can use the commutation relations in order
to simplify this to a form where we are only left with expectation values involving ⟨σi⟩ss. We
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show how to do this on
〈
ȧ†adbaadb

〉
ss〈

ȧ†adbaadb

〉
ss

=
4g

κ2

〈(
−
κ
(
γκ+ 4g2

)
2κ2 − 8g2

σ − 2gϵ
√
κκ3

κ4 − 16g4
σz +

8g3ϵ
√
κκ

κ4 − 16g4

)(
gσ − ϵ

√
κ
)〉

ss

=
2gϵ

(
γκ+ 8g2

)
√
κ (κ2 − 4g2)

⟨σ⟩ss

−
g2
((
4g2 + κ2

) (
γκ+ 4g2

)
− 8κ3ϵ2

)
κ (κ4 − 16g4)

(⟨σz⟩ss + 1)

− 8g2ϵ2

κ2 − 4g2
,

(5.36)

where we used ⟨σ⟩ss =
〈
σ†〉

ss
, which is the case as can be seen from Eq. (5.28). By plugging in

the results of ⟨σ⟩ss and ⟨σz⟩ss from Sec. 5.2.2 we will obtain the final result. Applying the same
steps to the other parts of Eq. (5.35) will result in

〈
a†a
〉
ss

=
4κϵ2

(
γ2
(
κ2 − 4g2

) (
4g2 + κ2

)2
+ 32g2κ5ϵ2

)
(κ4 − 16g4)

(
(4g2 + κ2) (γκ+ 4g2)2 + 32g2κ3ϵ2

) , (5.37)

which additionally gives us the normalization of the g(2)-function, so we have a practical need
to know this expression.
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Figure 5.7.: Comparison between
〈
a†a
〉
ss

of the different approximations for varying κ, in orange
adiabatic elimination, in blue prodiabatic elimination and in gray numerics. System
values are chosen as ϵ/

√
g = 1/100

√
2 and γ/g = 1/200.

In Fig. 5.7 we can see a qualitative comparison between the estimations of
〈
a†a
〉
ss
. One thing

we notice is the initial mismatch between prodiabatic elimination and numerics for low κ. This
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tail comes from the fact that at this point κ ≈ 2g, which means we divide by 0 in Eq. (5.37), for
values of κ < 2g the prodiabatic elimination can also predict a negative photon number, which
is unphysical. Therefore this mismatch was to be expected and we should restrict our conclusion
to the part of κ > 2g. In this region, we notice that the prodiabatic elimination converges faster
to the numerics than the adiabatic elimination.

Steady state expectation values involving more cavity operators are computed in the same
manner, first we replace each a by Eq. (5.9), then use the fact that we can write this operator
as one that is just in the two-level system and use the commutation relations of the two-level
system. Now this expression should just depend on ⟨σi⟩ss for which we found expressions already
in Sec. 5.2.2, plugging these values in will conclude the calculation.
Here we also want to outline how we compute expectation values involving both cavity and

two-level operators. In the case of the adiabatic elimination we used normal ordered operators,
so all creation operators are to the left and all annihilation operators to the right, but with no
ordering in the respective group. This was enough since

[σ, aadb] = 0 , (5.38)

but for the prodiabatic elimination in the long time limit, we notice that Eq. (5.9) has a term
proportional to σz, therefore it makes a difference if σ is to the left or the right of apdb. Following
[17], for any two-level operator Σ we use the ordering〈

(a†pdb)
nΣ(apdb)

m
〉
ss

, (5.39)

where n and m are some natural numbers, so we put the atom expectation values in the middle
and the cavity operators to the outside, notice that the overall structure remains normal ordered.
This ordering also makes sense since one can use the same argument as in Sec. 4.4 Eq. (4.33) to
drop the noise operators.

5.3.2. Average Cavity Field ⟨a(t)⟩
For the cavity field, two things come to mind; first, we need to compare aadb(t) to apdb(t) and
secondly, we can also compare them by assuming κt ≫ 1, thus apdb(t) will be described by
Eq. (5.9). This gives insight into how the prodiabatic elimination compares to the adiabatic
elimination if one assumes large κ, which comes naturally for the adiabatic case but not in the
prodiabatic one. The large κ aspect of the adiabatic elimination is outlined in Sec. 4.4. The full
prodiabatic result is obtained trough

⟨apdb(t)⟩ = ⟨a(0)⟩ e−κt
2

− 2i

κ

(
g ⟨σ(t)⟩ − ϵ

√
κ
)
(1− e−

κt
2 )

− 2ig

κ2

(
−
κ
(
γκ+ 4g2

)
2κ2 − 8g2

⟨σ(t)⟩ − 2gϵ
√
κκ3

κ4 − 16g4
⟨σz(t)⟩+

8g3ϵ
√
κκ

κ4 − 16g4

)(
−2 + e−

κt
2 (2 + κt)

)
,

(5.40)

where ⟨σi(t)⟩ is given by Eq. (5.17). This expression of apdb is obtained by plugging in Eq. (5.10)
into Eq. (5.7).
Further on we want to compare this result to numerics and the adiabatic elimination, to do

this we consider the photon-reduced steady state of Eq. (4.17), which we obtain from numerics
and use for the initial conditions. A comparison between the different results on | ⟨a(t)⟩ | is done
in Fig. 5.8.

35



5. Prodiabatic Elimination

gt
0 5 10

0.00

0.02

0.04

0.06

0.08

gt
0 5 10

0.01

0.02

0.03

0.04

0.05

A B

Pdb
Pdb𝜅t ≫ 1

Adb
Num

Pdb
Pdb𝜅t ≫ 1

Adb
Num

Figure 5.8.: Plot of | ⟨a⟩ | as a function of time for varying κ, orange adiabatic elimination, blue
prodiabatic elimination, green prodiabatic elimination assuming κt ≫ 1 (Eq. (5.9))
and in gray full numerics. Evolution starting in the photon reduced state, see
Eq. (4.17). System values are κ/g = 3 for A and κ/g = 5 for B, other values are
chosen as ϵ/

√
g = 1/10

√
2 and γ/g = 1/200.

In Fig. 5.8 we see how well each of the approximations performs and compare them quali-
tatively. While all of them seem to work fairly well for larger κ (panel B), we can see a big
difference for lower κ (panel A). We first notice that the prodiabatic elimination, for κt ≫ 1,
is far away from the initial conditions, this makes sense since the assumption of κt ≫ 1 has to
fail for t = 0. Another way to understand this is that we know the adiabatic elimination works
fairly well to get steady state expectation values of ⟨a⟩, but for t = 0 we will be shifted away
from the adiabatic result by the derivative of ȧadb, therefore leading to this mismatch. Further,
we observe that both prodiabatic elimination approximations converge faster to the results of
the numerics than the adiabatic elimination, this being visible in both panels.
Next, we can discuss the effect of choosing the vacuum as the initial state, remembering that

the adiabatic elimination needed some time in order to match the numerics, as can be seen in
Fig. 4.1.

36



5. Prodiabatic Elimination

gt
0 5 10

0.000

0.001

0.002

0.003

0.004

0.005

0.006

gt
0 5 10

0.000

0.001

0.002

0.003

0.004

A B
Adb
Pdb
Pdb𝜅t ≫ 1

Num

Adb
Pdb
Pdb𝜅t ≫ 1

Num

Figure 5.9.: Plot of | ⟨a⟩ | as a function of time for varying κ, orange adiabatic elimination, blue
prodiabatic elimination, green prodiabatic elimination assuming κt ≫ 1 (Eq. (5.9))
and in gray full numerics. Evolution starting in the vacuum |0⟩ |0⟩. System values
are κ/g = 6 for A and κ/g = 10 for B, other values are chosen as ϵ/

√
g = 1/100

√
2

and γ/g = 1/200.

In Fig. 4.1 we can see nicely the effect of incorporating the initial conditions as the prodiabatic
result matches well at early times. For later times it seems to converge quickly to similar values
as the adiabatic elimination, this effect is visible for both the full prodiabatic elimination and
the long time limit of the prodiabatic elimination. Additionally, we notice that an increase in κ
increases the accuracy of all approximations, as panel B displays a better fit than panel A.

5.3.3. Obtaining the g(2)(t)-Function

In order to obtain the g(2)-function we need to compute
〈
a†(0)a†(τ)a(τ)a(0)

〉
. This calculation

is rather straightforward but ends with a big expression. Here we will again show the solution
if one assumes κt ≫ 1 and use Eq. (5.9) for a since this will result in a more simple and
understandable expression, but obtaining the full expression is done in the same manner. We
again start by finding a†a for κt ≫ 1, this results in

a†pdb(t)apdb(t) =− 4gκ3/2ϵ(γ + κ)

(κ2 − 4g2)2

(
σ(t) + σ†(t)

)

+
2g2

(
(γ + κ)2

(
4g2 + κ2

)2 − 16κ5ϵ2
)

(κ4 − 16g4)2
(σz(t) + 1)

+
4κ3ϵ2

(κ2 − 4g2)2
,

(5.41)

where once again we will assume κ > 2g and that we can use the commutation relations of
the two-level system operators at equal times. As outlined in Sec. 5.1.2, the time-dependent
operators are obtainable within our approximation. Notice that by expanding the prefactors of
Eq. (5.41) up to order of 1/κ2 one will reobtain Eq. (4.19), so we can again see the similarities
to the adiabatic elimination.
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5. Prodiabatic Elimination

We find the full g(2)-function by using similar steps as in Sec. 4.3.2. We again use the quantum
regression theorem to find

〈
a†(0)σ(t)a(0)

〉〈
a†(0)σ†(t)a(0)

〉〈
a†(0)σz(t)a(0)

〉〈
a†(0)a(0)

〉
 = eAt


〈
a†σa

〉
ss〈

a†σ†a
〉
ss〈

a†σza
〉
ss〈

a†a
〉
ss

 , (5.42)

where the matrix A is given by Eq. (5.16). Where all steady-state expectation values are
obtainable from within the theory as was outlined in Sec. 5.3.1. Combining these results with
Eq. (5.41) we obtain〈

a†(0)a†
pdb(τ)apdb(τ)a(0)

〉
=− 4gκ3/2ϵ(γ + κ)

(κ2 − 4g2)2

(〈
a†(0)σ(τ)a(0)

〉
+

〈
a†(0)σ†(τ)a(0)

〉)

+
2g2

(
(γ + κ)2

(
4g2 + κ2

)2 − 16κ5ϵ2
)

(κ4 − 16g4)2

(〈
a†(0)σz(τ)a(0)

〉
+

〈
a†(0)a(0)

〉)
+

4κ3ϵ2

(κ2 − 4g2)2

〈
a†(0)a(0)

〉
,

(5.43)

which is the numerator of the g(2)-function, combining this with the normalization, given by
Eq. (5.37), we obtain an expression of the g(2)-function, in the long time limit by

g(2)(τ) =

〈
a†(0)a†pdb(τ)apdb(τ)a(0)

〉
⟨a†a⟩2ss

. (5.44)

In Fig. 5.10 this solution is identified by g
(2)
κt≫1(τ). The same steps can be applied to the full

prodiabatic elimination, but the expression for a†a already is much larger, due to the time-
dependent prefactors of the operators as for example the (1 − e−

κt
2 ) prefactor of aadb(t), see

Eq. (5.6).
We again want to compare these results to numerical simulations, as earlier we will obtain

the photon reduced steady-state Eq. (4.17) from numerics, the comparison between them can
be seen in Fig. 5.10.
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In Fig. 5.10 we see a comparison of those methods again a strict outperformance of the prodi-
abatic elimination in comparison to the adiabatic elimination can be observed, where Eq. (5.41)
converges quickly to the prodiabatic result, which outperforms the adiabatic elimination at all
times. We also notice that the full prodiabatic elimination can capture the overall shape of the
g(2)-function with disagreements being minor. One question raised by panel A is, why does it
look like at t = 0 we have a disagreement between full prodiabatic elimination and numerics?
Since in principle the prodiabatic elimination should incorporate the initial condition, therefore
this seems to be wrong. However, the reason for this initial mismatch is that the normalization
constant of the prodiabatic elimination overestimates the photon number in the steady state,
giving rise to this shift.
As in Chap. 4 we also want to show a simple expression of the g(2)-function in the low drive

limit. For this, we assume κt ≫ 1 and calculate the g(2)(τ)-function in the manner as outlined
at the beginning of this section. This final result we expand in orders of ϵ to obtain

g(2)(τ) =

(
1− F 2

p

1−
(γ
κ

)2
1−

(γ
κ

)2
F 2
p

e
− γ

2

Fp+1

1− γ
κFp

τ

)2

+O(ϵ2) , (5.45)

where Fp is given by Eq. (3.1). Notice that for a low drive, the bad cavity limit is fulfilled if
γ/κ ≪ 1. In the limit of γ/κ → 0 we notice Eq. (5.45) will become Eq. (4.25), again displaying
that we go beyond the adiabatic elimination and have more relaxed conditions on the system
values. But if we go to the bad cavity limit we retrieve the results of the adiabatic elimination,
which are exact in this limit.
Based on this we are also able to obtain a simple expression of the g(2)(0) for low drives by

g(2)(0) =
(1− 2β)2((γ

κβ
)2 − (β − 1)2

)2 +O(ϵ2) , (5.46)

where β is given by Eq. (3.4). In Eq. (4.26) we presented the same quantity g(2)(0) but using the
adiabatic elimination. Similar to the adiabatic elimination, the prodiabatic elimination predicts
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5. Prodiabatic Elimination

perfect photon antibunching for β = 1/2. However, the two methods differ in their predictions
for perfect photon bunching; the prodiabatic elimination predicts it at β = 1

1+ γ
κ
, while the

adiabatic elimination predicts it at β = 1. Assuming that neither κ nor γ is zero, β = 1 is
not achievable by a finite coupling, which is in contrast to the prodiabatic elimination, which
expects a value of β achievable by a finite coupling between the cavity and the two-level system.
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6. Method of Multiple Scales

In this chapter we want to employ a standard singular perturbation technique on the problem,
giving a ground to compare the adiabatic and the prodiabatic elimination to standard techniques.
The chosen technique is the method of multiple scales, also known as the two-timing method
when applied with two time scales. To illustrate its mechanics, this chapter begins with a
simple test example, further on we outline how the method is applied to our specific problem
and conclude with an explanation of why the approach was ultimately deemed unsuitable.
Rather than delving deeply into the details of the calculations, we aim to provide an overview

of the chosen method, the principles behind its application, and the reasons for ultimately
abandoning this ansatz. The primary references for this approach are [31–33].

6.1. Minimal Example of the Method of Multiple Scales

Let us start with an example of how the multiple time-scale method works for the second-order
differential equation

ÿ + ϵẏ + y = 0 , (6.1)

where we assume ϵ ≪ 1. We note that this is the differential equation of a damped harmonic
oscillator, which can be solved exactly. Having an exact solution to this problem is good since
in the end we can compare the perturbative result of the method of multiple scales to it, which
gives insight into which behavior the method can capture and how well it performs on this
problem.
The technique begins by introducing two or more time scales; in our case, the fast time scale

t and the slow time scale τ = ϵt. Since ϵ is assumed to be very small, it follows that τ ≪ t,
indicating that the timescale τ evolves much slower than t, justifying the designating of τ as
the slow variable. Furthermore, we treat t and τ as independent parameters of y(t, τ), even
though they are inherently related through t. The idea is that the short-term (fast) behavior
can effectively decouple from the long-term (slow) behavior, allowing them to be considered
independent [31]. In the case of the damped harmonic oscillator, the fast time scale captures
the oscillatory behavior, while the slow time scale accounts for the damping. The assumption
of independence between t and τ in y(t, τ) leads to

ẏ =
∂y

∂t
+

∂y

∂τ

∂τ

∂t

=
∂y

∂t
+ ϵ

∂y

∂τ
,

(6.2)

and

ÿ =
∂

∂t

(
∂y

∂t
+ ϵ

∂y

∂τ

)
+ ϵ

∂

∂τ

(
∂y

∂t
+ ϵ

∂y

∂τ

)
= ytt + 2ϵytτ + ϵ2yττ ,

(6.3)

where we introduced small subscripts indicating a derivative.
Next, we expand y(t, τ) in orders of ϵ

y = y0 + ϵy1 +O
(
ϵ2
)
, (6.4)
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where from now on we disregard terms of order ϵ2 and higher, thus the differential equation
simplifies to

(y0)tt + ϵ(y1)tt + 2ϵ(y0)tτ + ϵ(y0)t + y0 + ϵy1 = 0 . (6.5)

To solve this equation we first sort it in orders of ϵ

O(1) : (y0)tt = −y0
O(ϵ) : (y1)tt + 2(y0)tτ + (y0)t = −y1 ,

and then solve each order independently. From the O(1) equation it is simple to find

y0(t, τ) = A(τ)eit +A∗(τ)e−it , (6.6)

as it is the differential equation of a usual harmonic oscillator. Here it is important to note that
the amplitude function A(τ) may depend on the slow timescale, this is because theO(1)-equation
is a partial differential equation only in the fast timescale. Plugging the result of Eq. (6.6) into
the O(ϵ) equation we obtain

(y1)tt + y1 = −(2Aτ +A)ieit + conj. , (6.7)

where the conj. is the first part−(2Aτ+A)ieit complex conjugated. We will use conj. in the same
way further on. The method of multiple scales is designed to systematically eliminate secular
terms. In our context, secular terms refer to those that prevent the solution from converging to
a fixed value, often leading to divergence or unbounded growth over time.
Applying this condition on our equation we demand 2Aτ + A = 0, which is solved by A =

A(0)e−τ/2. This term is problematic since Eq. (6.7) describes a driven harmonic oscillator, if
the driving force is for example on resonance the amplitude of the oscillations would increase in
time, leading to a secularity. By removing this term with the mentioned condition we obtain

y0(t) = A(0)e−
1
2
ϵteit + conj. . (6.8)

Where A(0) can be determined from the initial conditions of y. In this expression, we also see
how the slow time scale τ = ϵt captures the damping and the fast time scale t accounts for the
oscillations.
Since we chose a pretty simple example we can compare Eq. (6.8) to the exact solution

yexact(t) = c1e
− 1

2
ϵte

t
2

√
ϵ2−4 + conj. , (6.9)

where c1, equivalently to A(0), is a constant to be determined by the initial conditions. The
exact result of Eq. (6.9) bears a lot of similarities to the solution of the method of multiple scales
of Eq. (6.8). Notice we assumed ϵ ≪ 1, otherwise truncating the expansion in orders of ϵ would
not be justified, because of this

√
ϵ2 − 4 ≈ 2i and thus the exact solution is equal to the result

of the method of multiple scales Eq. (6.8) in the limit of ϵ → 0.

6.2. Application to the Cavity-Atom System

First, we need to explain why out of all perturbation methods we chose the method of multiple
scales. We were inspired by the adiabatic elimination which assumes that the fast timescale is
the cavity and the atom is the slow one. We assumed that by incorporating the fast time scale,
instead of eliminating it, we would end up with an improvement compared to the adiabatic
elimination. Further, we will show why this does not give a satisfactory result in comparison to
the adiabatic or prodiabatic elimination.
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6. Method of Multiple Scales

To remind ourselves we have the objective of applying the method of multiple scales to
Eqs. (4.1), (4.2) and (4.3), where we assume the drive to be on resonance ∆c = ∆d = 0.
To start this calculation we need to first obtain a perturbation parameter as well as the different
timescales, in principle one can define any number of different timescales, but we will stick to
two. The idea is that one timescale describes the cavity and the other one the two-level system.
The perturbation parameter of our choice is 1/κ for the simple reason that κ is a big parameter
in the context of the bad cavity limit and the adiabatic elimination [17], which we try to orient
ourself on. Since we will be expanding in orders of 1/κ, we also need to modify the drive. Pre-
viously, the drive had a strength of ϵ

√
κ, but to ensure a straightforward expansion, we assume

that the drive is independent of the dissipation rate κ. To achieve this, we make the replacement

ϵ
√
κ → E , (6.10)

where E is independent of κ. This picture can be interpreted as the drive and dissipation being
on different sides of the cavity. The equations of motion will take the form

ȧ = −κ

2
a− igσ + iE (6.11)

σ̇ = −γ

2
σ + igZa (6.12)

Ż = −2ig(σ†a− a†σ)− γ(Z + 1) , (6.13)

where we use σz = Z, to avoid indices getting crowded.
Next we introduce the timescales we want to work with, one might first consider the timescales

t and t/κ as done in the example problem of Sec. 6.1, but those scales would have different units,
which we try to avoid. Motivated by the dissipative processes governed by γ and κ, we introduce
the dimensionless timescales

tf = κt (6.14) ts = γt , (6.15)

since they are dimensionless the name timescale is misleading, but we will use the name anyway.
After the approximation, we will always end up plugging in the t for which then the normal
interpretation of being a time always remains the same. The reasoning behind those timescales
is that tf should capture the fast timescale, coming from the adapting cavity field, and ts being
the slow one, stemming from the two-level system. Moving on, we compute the first derivative
of an arbitrary function A(ts, tf ) leading to

Ȧ =
d

dt
A =

∂tf
∂t

∂tfA+
∂ts
∂t

∂tsA = κ∂tfA+ γ∂tsA , (6.16)

where we used the short version ∂ti =
∂
∂ti

, this notation will be common in this chapter since we

will be dealing with a few partial derivatives.
Next, we assume all operators to be expandable in orders of 1/κ, as well as being functions

of both timescales

a(ts, tf ) ≈ a0(ts, tf ) +
1

κ
a1(ts, tf ) +

1

κ2
a2(ts, tf ) +O

(
1/κ3

)
(6.17)

σ(ts, tf ) ≈ σ0(ts, tf ) +
1

κ
σ1(ts, tf ) +

1

κ2
σ2(ts, tf ) +O

(
1/κ3

)
(6.18)

Z(ts, tf ) ≈ Z0(ts, tf ) +
1

κ
Z1(ts, tf ) +

1

κ2
Z2(ts, tf ) +O

(
1/κ3

)
, (6.19)

where we want to note that the order n operators as for example an are not dimensionless
anymore, but have units of energyn, this is the case because our perturbation parameter 1/κ
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has units of 1/energy. The expanded operator representations can be plugged into the equation
of motions Eqs. (6.11), (6.12) and (6.13)) and sorted in orders of 1/κ. We will show how to
do this for the cavity operator a. Inserting the expanded expressions of the operators into the
equation of motion will lead to

1

κ

(
γ

(
∂tsa0 +

1

κ
∂tsa1

)
+ κ

(
∂tfa0 +

1

κ
∂tfa1

))
= −1

2

(
a0 +

1

κ
a1

)
− ig

κ

(
σ0 +

1

κ
σ1

)
+ i

E

κ
,

(6.20)

sorting them in orders of 1/κ results in

O(1) : ∂tfa0 = −1
2a0

O( 1κ) : γ∂tsa0 + ∂tfa1 = −1
2a1 − igσ0 + iE .

Applying the same steps on σ we obtain

O(1) : ∂tfσ0 = 0

O( 1κ) : γ∂tsσ0 + ∂tfσ1 = −γ
2σ0 − igZ0a0 ,

and for Z

O(1) : ∂tfZ0 = 0

O( 1κ) : γ∂tsZ0 + ∂tfZ1 = −γ (Z0 + 1)− 2ig
(
σ†
0a0 − a†0σ0

)
,

now one has to apply the same steps as outlined in Sec. 6.1, while being very careful about what
might be a secular term. First, we find a0 from the O(1) equation of a

a0(ts, tf ) = A0(ts)e
−

tf
2 , (6.21)

as in Sec. 6.1 the amplitude A0 can still be a function of the slow timescale. Now use the solution
of O(1) in the O(1/κ) equation of a to see

∂tfa1 = −1

2
a1 − γ∂tsa0 − igσ0 + iE

= −1

2
a1 − γe−

tf
2 ∂tsA0(ts)− igσ0 + iE ,

(6.22)

notice that from O(1) of σ we know that σ0(ts) is only a function dependent on the slow
timescale, therefore Eq .(6.22) can be solved by using the method of variation of parameters

a1(ts, tf ) = −γ (∂tsA0) tfe
−

tf
2 − 2i (gσ0(ts)− E) +A1(ts)e

−
tf
2 , (6.23)

where A1(ts) comes from the integration constant. Understanding which terms may be secular is
not easy, here we will follow the definition of [33]. Secular terms are now found by the following
condition: if they can become larger than a lower-order term, during the time evolution, they
are secular and therefore should be eliminated. For this purpose, notice that in the solution of

the O(1/κ) Eq. (6.23) of a exists a term that is ∝ tfe
−

tf
2 , which at some point might outweigh

the simple decay given in the O(1) part of Eq. (6.21), therefore we will have to remove this term
by the condition

∂tsA0 = 0 ⇔ A0(ts) = a0(0) , (6.24)
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where we already applied the initial conditions. With this, one obtains a full expression of the
O(1) solution of the cavity field operator

a0(t) = a0(0)e
−κ

2
t . (6.25)

If we wanted to obtain a full expression for the 1/κ-term we would have to include a term of
order 1/κ2 in a. This will then give rise to secular terms, which determine the O(1/κ) solution
and therefore give an expression of A1(ts). In general, the next higher-order term provides the
necessary conditions to fully determine the term of the preceding order, therefore to obtain an
approximation up to order 1/κn, one must include terms up to order 1/κn+1.

For higher-order terms, the equations of the two-level system and the cavity field become
increasingly intertwined, increasing the complexity of following those steps and making them
high in labor cost. But this is not the only reason why we discarded this technique in the end.
One is the expansion in 1/κ is only possible if κ is by far the largest value, but this is not
necessarily the case, for example, terms like Fp of Eq. (3.1) are of order 1/κ but might still be
bigger than 1. Therefore, the underlying condition to truncate the expansion is not reasonable,
as higher-order terms can be as relevant as lower-order terms.
In this chapter we only displayed how to solve the first order of a, we didn’t display the result

up to and including the order 1/κ2 terms. The result of this is rather large and we do not want
to outline it here, but we can have a look at the result in the long time limit, here as in the
prodiabatic elimination we will assume κt = tf ≫ 1. When we apply this long time limit to the
expression of a up to and including the order 1/κ2 we obtain

a = −2i

κ

[
g

((
1− γ

κ

)
σ0(ts) +

1

κ
σ1(ts)

)
− E

]
, (6.26)

notice that under the assumption of γ/κ ≪ 1 this expression would be the adiabatically elim-
inated cavity operator expanded up to order 1/κ2. This seems to be promising, but in reality
this approximation of σ = σ0 + 1

κσ1 is too low order in 1/κ to capture the dynamics of the
two-level system well, which will lead to errors happening quickly as soon as κ is not by far the
largest parameter, as can be seen in Fig. 6.1.
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Figure 6.1.: Comparison between the different approximations on | ⟨a⟩ |, the initial state is chosen
to be the vacuum. In orange adiabatic elimination, blue prodiabatic elimination,
pink method of multiple scales up to and including order 1/κ2 (Mms) and in gray
the full numerics. System values are chosen as γ/g = 1/2 and E/g = 1/20 and in
A κ/g = 15 and in B κ/g = 25.

In Fig. 6.1 we compare the method of multiple scales up to order 1/κ2, represented by the
pink line, with the other approximations found in this thesis. For increasingly high κ it will align
more with the numerics, but here we want to outline that we already use large κ. Since it is
much more complicated and time-consuming to go through this sequence than it is to simply do
the adiabatic or prodiabatic elimination, we do not consider this approach to have much merit.
A possible way of improving this method is to consider more timescales and/or considering a
different perturbation parameter.
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7. Conclusion & Outlook

This thesis introduced the prodiabatic elimination, a novel method extending beyond the lim-
itations of the adiabatic elimination in open quantum systems. By incorporating a systematic
Taylor expansion, this approach allows for the inclusion of higher-order corrections and initial-
state effects, providing an enhanced accuracy in the g(2)-function and other observables. Com-
pared to the adiabatic elimination, the prodiabatic elimination offers a more robust and versatile
framework for solving the dynamics of a coupled cavity two-level system.
We introduced the prodiabatic elimination in Chap. 5, where we found that instead of using

time-dependent operators, it is possible to find a master equation, describing the same dynamics.
Further, for low drive strengths, it is possible to neglect the negative rate of the master equation,
resulting in a simple Lindblad master equation that outperforms the adiabatic elimination and
aligns well with the full prodiabatic elimination. Lastly, we found that the prodiabatic elimi-
nation outperformed the adiabatic elimination in describing the two-level dynamics, the cavity
dynamics, steady-state values as well as the g(2)(t)-function.

The method of multiple scales a standard singular perturbation method, seemed to offer sim-
ilar capabilities as the prodiabatic elimination, but the complexity outweighs the advantages, as
demonstrated in this works Chap. 6. In contrast, the prodiabatic elimination strikes a balance
between computational simplicity and accuracy, making it a promising tool for future applica-
tions. We also explored alternative methods to approximate the dynamics, which are compiled
and discussed in the appendix, see App. A.5.

While we successfully extended beyond the adiabatic elimination, several potential extensions
to this work remain. Firstly, our results were tested on a single system. The adiabatic elimination
is known for its general applicability, it is unclear whether the prodiabatic elimination will
consistently outperform it in more complex systems. Testing the method on a broader range of
systems with increased complexity represents a logical next step.
Additionally, incorporating higher-order terms into the prodiabatic elimination is currently

not feasible in the same manner. Identifying the most efficient and generalizable method remains
an open question.
Finally, comparing the prodiabatic elimination with real experimental measurements could

provide valuable insights, since experimental data for the studied system already exists this
should be a straightforward extension to this work [34].
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A. Appendix

A.1. Rotating Frame

In this section, we introduce the concept of moving into a rotating frame, a common technique
used to simplify problems with time dependencies in the Hamiltonian. Usually one uses this
technique to make a drive term time independent. The idea behind the rotating frame is to
follow the time dependence by a reference frame that rotates at the same frequency as the drive.
When we observe the system from this new perspective, the drive’s time dependency is gone.
This transformation simplifies our analysis, as it allows us to study the dynamics without the
added complication of a time-dependent drive term. However, transitioning to a rotating frame
involves more than just changing the state representation. Since we are viewing the system from
a new reference frame, we must also adjust the Lindblad master equation to accurately describe
the dynamics for this frame. For this consider the Lindblad master equation

d

dt
ρ = −i[H, ρ] +

∑
i

κiD[Li]ρ , (A.1)

where ρ is the state at question, H the Hamiltonian and Li are some Lindblad jump operators
with rate κi. Now we introduce a unitary operator R(t), also named the rotating operator,
which moves us into the rotating frame. In the rotating frame, the time dynamics are given by

d

dt
(ρ′) =

d

dt
(RρR†) = ṘR†ρ′ + ρ′RṘ† − i[RHR†, ρ′] +

∑
i

κiD[RLiR
†]ρ′ , (A.2)

where we used the shorthand notation R(t) = R and used the unitarity of R multiple times.
We also identified the density matrix in the rotating frame by ρ′ = RρR†. In the context of the
Jaynes-Cummings model, the rotating operator is given by

R(t) = eiωd(a
†a+σ†σ)t , (A.3)

where ωd is the drive frequency. With this form of the rotating operator, notice that we obtain
the identities

RaR† = ae−iωdt (A.4) RσR† = σe−iωdt . (A.5)

Using these identities, one can compute the new time dynamics in a simple fashion. The result-
ing master equation of this rotating frame is given by Eq. (3.16). More detailed information as
well as the full derivation can be found in [35].

A.2. Analysis of Exponential Matrix of Adiabatic Elimination

In this section, we want to further investigate the two-level dynamics of the adiabatic elimination.
Assuming the drive to be on resonance ∆c = ∆d = 0 we will take a look at the eigenvalues of
the matrix A, where A is given by Eq. (4.9). The eigenvalues give us insight into the two-level
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dynamics in the context of the adiabatic elimination since if A is diagonalizable by a transition
matrix Adiag = S−1AS, we can write the solution as

v⃗(t) = eAtv⃗(0) = SeS
−1AStS−1v⃗(0) = SeAdiagtS−1v⃗(0) . (A.6)

Given the eigenvalues of A, which are the diagonal components of Adiag we can therefore find
important properties of the dynamics. The eigenvalues read

λ0 = 0 (A.7)

λ1 = −γ

2
− 2g2

κ
(A.8)

λ2,3 = −
3γκ+ 12g2 ±

√
(γκ+ 4g2)2 − 256g2κϵ2

4κ
, (A.9)

where now the first eigenvalue λ0 just comes from the fact that we include the differential
equation of the identity in the vector v⃗(0), see Eq. (4.10) and any constant will not evolve in time.
λ1 also has a rather straightforward interpretation as it is simply proportional to the enhanced
decay rate of the two-level system. Further, we are interested in λ3, which might become positive
inducing exponential growth instead of decay, leading to an unphysical phenomenon. But the
maximal value this term can take is

λ3 = −γκ+ 4g2

2κ
= λ1 , (A.10)

which is always negative, achieving it is possible by ϵ = 0. So we are always ensured to get a
decay, which then gives us finite steady-state expectation values.
Another consideration is if our eigenvalues λ2,3 can have imaginary parts, which would mean

that we end up with oscillations in the two-level operator expectation values. Achieving this is
simple, one needs to adjust the drive to exceed a critical value defined by the inequality

ϵ√
κ
>

γκ+ 4g2

16κg
. (A.11)

A.3. g(2)(0)-Function in the Adiabatic Elimination

For this section, we aim to find steady state representations of the g(2)-function, which is equiv-
alent to g(2)(0), by doing this we will also find a way to find general steady-state expectation
values, in the framework of the adiabatic elimination. It is enough to look at the adiabatic elim-
inated equations of motion, given by Eqs. (4.7) and (4.8). For which we assume steady-state
conditions, which eliminates all derivatives

0 =− 2gϵtc√
κ

σz −
(
2g2tc
κ

+
γ

2
+ i∆d

)
σ (A.12)

0 =−
(
4g2

κ
Re{tc}+ γ

)
(σz + 1) +

4gϵ√
κ

(
t∗cσ + tcσ

†
)
, (A.13)

where this linear system of equations is solved by

σss =
4g

√
κtcϵ

(
4g2t∗c + κ(γ − 2i∆d)

)
κ2
(
γ2 + 4∆2

d

)
+ 8g2 (2|tc|2 (g2 + 2κϵ2) + κ(2∆d Im{tc}) + γ Re{tc}))

1 (A.14)

σz,ss = −4g2tc + κ(γ + 2i∆d)

4gϵ
√
κtc

σss , (A.15)
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where the subscript •ss indicated the steady state representation of the operator.
One could be confused as to why our operators became proportional to an identity, this is

rather counterintuitive but makes sense. Remember for an operator A and an arbitrary state ρ
we always have the condition

tr{Assρ} = ⟨A⟩ss . (A.16)

This property must be independent of the choice of ρ since we know that we will have a unique
steady state independent of the initial conditions. Further, if Ass is simply proportional to an
identity operator c1, where c is a constant

⟨A⟩ss = tr{Assρ} = tr{ρ}c = c , (A.17)

and therefore Ass = ⟨A⟩ss 1. It is important to note, that this is not a proof of this property
but makes the earlier result more understandable. The steady-state values may depend on the
initial state, in those cases, this property cannot be true. Since this representation will always
give the same steady-state expectations values, independent of the state ρ. In our case this is a
true statement, therefore making the results reasonable.
For simplicity, we will now also assume the drive to be on resonance to the cavity and two-level

system tc = 1 and ∆d = 0, which simplifies our steady state values to

⟨σ⟩ss =
4g

√
κϵ
(
4g2 + κγ

)
(γκ+ 4g2)2 + 32g2κϵ2

(A.18)

⟨σz⟩ss = −1 +
32g2κϵ2

(γκ+ 4g2)2 + 32g2κϵ2
. (A.19)

Since our final goal is to find an expression for
〈
a†a†aa

〉
ss

and
〈
a†a
〉
ss

in the steady state case, we
now replace each a by aadb and use the known commutation relations of the two-level operators.
This leads to〈

a†a†aa
〉
ss

=

(
2

κ

)4 (
2g2ϵ2κ(⟨σz⟩ss + 1)− 2gϵ3κ

3
2

(
⟨σ⟩ss +

〈
σ†
〉
ss

)
+ ϵ4κ2

)
(A.20)〈

a†a
〉
ss

=

(
2

κ

)2(g2

2
(⟨σz⟩ss + 1)− gϵ

√
κ(⟨σ⟩ss +

〈
σ†
〉
ss
) + ϵ2κ

)
, (A.21)

which we can compute by simply plugging in the steady-state expressions of the two-level system
operators 〈

a†a†aa
〉
ss

=
16ϵ4

κ2

((
γκ− 4g2

)2
+ 32g2κϵ2

(γκ+ 4g2)2 + 32g2κϵ2

)
(A.22)

〈
a†a
〉
ss

=
4ϵ2
(
γ2κ+ 32g2ϵ2

)
(γκ+ 4g2)2 + 32g2κϵ2

, (A.23)

which one can already use in order to compare this result to numerical simulations of the system.
One may ask why we are doing this, since until now it looks like we did not use any assumptions
except for steady-state conditions, so it looks like we still have an exact expression, but this
is not true. To obtain an expression of, for example,

〈
a†a
〉
ss
, we assumed that it is correct to

replace a by aadb. But we know from Sec. 3.2 that a†(t)a(t) ̸=
(
a†a
)
(t) which will also cause an

inaccuracy for the steady state, we further outlined this behavior in Sec. 4.4. For the numerical
comparison, we will be using the g(2)-function at time 0, which means we want to evaluate

g(2)(0) =

〈
a†a†aa

〉
ss

⟨a†a⟩2ss
, (A.24)
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where we found an expression for all parts of this equation in Eqs. (A.22) and (A.23), plugging
in these values equates to

g(2)(0) =

((
γκ− 4g2

)2
+ 32g2κϵ2

)((
γκ+ 4g2

)2
+ 32g2κϵ2

)
κ2 (γ2κ+ 32g2ϵ2)2

. (A.25)

In Fig. A.1 we can see that the adiabatic elimination gives a very good estimation of the g(2)-
function at time 0, but we can also see that there is a mismatch for low values of κ. This
mismatch was further explained in Sec. 4.4.

A.3.1. Low Drive Expansions of g(2)(0)-Function

For this subsection, we focus on finding the earlier discussed g(2)(0), but we neglect terms of
order O

(
ϵ2
)
or higher, this will lead to a more simple expression of g(2)(0). We first find

⟨σ⟩ss =
4g

√
κϵ

γκ+ 4g2
+O

(
ϵ3
)

(A.26)

⟨σz⟩ss = −1 +
32g2κϵ2

(γκ+ 4g2)2
+O

(
ϵ3
)
, (A.27)

now using those expressions in Eqs. (A.20) and (A.21) we find a form of the g(2)(0)-function in
the low drive limit

g(2)ss (0) =

(
γ2κ2 − 16g4

)2
γ4κ4

=
(1− 2β)2

(1− β)4
, (A.28)

where we used the parameter β, given by Eq. (3.4).
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Figure A.1.: Comparison between exact numerical g(2)(0) (dashed and gray) and the one ob-
tained by the adiabatic elimination (orange) and the low drive expansion (blue)
as a function of κ on a log10-scale. System values are chosen as γ/g = 1/200 and
ϵ/
√
g = 2/1000

√
2.

In Fig. A.1 it is observable that for bigger κ the agreement between the approximations and the
numerics is increased, hinting the fact that the approximation seems to get better if κ is big,
which aligns with the results of [17].

A.4. Derivation of the Master Equation for the Prodiabatic
Elimination

For this section, we want to find an LME that will reproduce the dynamics given by Eqs. (5.14)
and (5.15). In Chap. 4 it was possible to guess the master equation based on what we expect to
happen in the two-level system. For us, it was not possible to guess an LME in the prodiabatic
case, but one can still find a master equation (ME) as we will show in the following. Note that
we found a ME not a LME, this is because one of the rates turns out to be negative. We will
mostly rely on [36] for the whole derivation.
We start by defining a set of operators Fi, which are orthogonal with respect to the Hilber-

Schmidt inner product
tr{F †

i Fj} = δi,j , (A.29)

which is done in our case by

F1 = σ (A.30) F2 = σ† (A.31) F3 =
1√
2
σz , (A.32)
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Next we define the general form of the generator

ρ̇ = −i[H, ρ] +
3∑

i,j=1

cij

(
FiρSF

†
j − 1

2

{
F †
j Fi, ρ

})
, (A.33)

where the Hamiltonian H, as well as the 3 × 3 matrix c, are so far unknowns [36]. Using
Eq. (A.33) we can derive an expression of Ȧ for an arbitrary operator A

Ȧ = −i [A,H] +
2∑

i,j=1

cij

(
F †
jAFi −

1

2

{
F †
j Fi, A

})
, (A.34)

the derivation of this equation works in the same way as for Eq. (3.18). Based on this we derive
the equations of motion of σ and σz and further set them equal to Eqs. (5.14) and (5.15). This
step will eliminate a few unknowns, but because we have a total of 8 equations from this but 9
unknowns in c and a further 4 from H we do not expect a definite solution from this. By doing
these steps we find

H =

 H1
2igκ3/2ϵ(2g2+κ2)

κ4−16g4

−2igκ3/2ϵ(2g2+κ2)
κ4−16g4

H2

 , (A.35)

as well as

c =


κ(γκ+4g2)
κ2−4g2

a12
−8

√
2g3κ3/2ϵ+a32(κ4−16g4)

16g4−κ4

0 0 0

−8
√
2g3κ3/2ϵ

16g4−κ4 a32 −i(H1 −H2)

 , (A.36)

but in order to arrive at a ME one requires that c is diagonalizable by a unitary U such that
UcU † = cdiag., where cdiag the matrix with the eigenvalues γi of c on the diagonal [36]. From
linear algebra, we know that a matrix is diagonalizable by a unitary if and only if it is normal,
therefore we have to require that

cc† = c†c , (A.37)

which will result in H1 = H2 and a12 = a32 = 0, but since H1 = H2 is nothing but a constant
shift to the Hamiltonian we set it to zero H1 = H2 = 0. Finding the unitary U is straightforward
as this is just the matrix consisting of the normalized eigenvectors of c in each row. Now we will
define a new set of operators Ai through

Fi =

3∑
k=1

UkiAk , (A.38)

where the index indicates the k, i element of the matrix U [36]. It is important to note that this
is not a normal matrix multiplication; instead, it will run over the column instead of the rows.
This can be interpreted as applying the transposed matrix. By identifying the vectors

F⃗ =
(
F1, F2, F3

)
(A.39) A⃗ =

(
A1, A2, A3

)
, (A.40)

we can derive a simple expression for the Ai operators by

A⃗ = U∗F⃗ , (A.41)

where U∗ is the complex conjugated matrix U. Using Ai we can find the diagonal form of the
ME by

ρ̇ = −i[H, ρ] +

3∑
i=1

γi

(
AiρSA

†
i −

1

2

{
A†

iAi, ρ
})

= −i[H, ρ] +

3∑
i=1

γiD[Ai]ρ , (A.42)
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where γi is the corresponding eigenvalue of c.
Applying these steps we obtain the Hamiltonian

H = − igϵ√
κ

(
2 + γ

κFp

1−
(γ
κFp

)2
)(

σ − σ†
)
, (A.43)

and the rates

γ1,2 =
γ

2

(1 + Fp)(1 +
γ
κFp)±

√
8ϵ2γ
κ2 F 3

p + (1 + Fp)2(1 +
γ
κFp)2

1−
(γ
κFp

)2 , (A.44)

where Fp is given by Eq. (3.1). There exists a third rate but since it is 0 it will not affect the
dynamics and can be disregarded. Further, we define the variables

J1,2 =

(
(1−

(γ
κFp

)2)
κ1/2

2
√
2
(γ
κFp

)
gϵ

γ1,2 (A.45)

1/N1,2 =
√
1 + J2

1,2 , (A.46)

which then gives us an expression of the Ai by

Ai =
1

Ni

(
Jiσ +

1√
2
σz

)
, (A.47)

putting everything together the ME reads

ρ̇ = −i[H, ρ] + γ1D
[

1

N1

(
J1σ +

1√
2
σz

)]
ρ+ γ2D

[
1

N2

(
J2σ +

1√
2
σz

)]
ρ , (A.48)

which will reproduce the results obtained from the prodiabatic elimination. We can simplify
this result by pulling out the constants of the dissipator and by further writing everything with
respect to γ1,2 we obtain

ρ̇ = −i[H, ρ] +
∑
i=1,2

γi

1 + 2ϵ2κ
γ3

κ3
F 3
p

(1− γ2

κ2
F 2
p )

2γ2
i

D

σ +
2
(γ
κFp

)
gϵ(

(1−
(γ
κFp

)2)
κ1/2γi

σz

 ρ . (A.49)

It is important to note that γ2 is always negative (under κ > 2g assumption), this is because
the numerator is of the form x −

√
y + x2, where both x and y are positive. Because y is

positive
√

y + x2 will be strictly bigger than x, making the rate always negative. Note that
the denominator of γ2 is positive as long as κ > 2g holds. The negative rate implies that the
ME does not model physical states, as well as resulting in a time evolution that is not trace-
preserving or completely positive. Under the assumption that Fp is of order 1 in κ, the leading
order term of γ2 is of order 1/κ2, therefore we conclude that the effect of this rate is minimal
and it can be disregarded without a big loss of precision. Without assuming Fp to be of order
1 the leading order term is proportional to 1/κ5, leading to the same conclusion. For this term
to have a significant effect, one would need κ to be close to 2g as well as a large drive, both of
which are far from the bad cavity limit, which we will usually not consider since then the whole
point of having a fast adapting cavity breaks down, a more detailed discussion of the master
equation can be found in Sec. 5.2.1.
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A.5. Additional Notable Methods

In this section, we aim to provide a brief overview of several alternative approaches explored
during the development of this thesis. Rather than delving into detailed derivations, we focus
on describing the core ideas behind these methods and offering a general understanding of their
functionality.

A.5.1. Low Photon Number Elimination

This technique is quite simple, here we will assume that the total photon number in the system
is so small that we are able to approximate σza ≈ −a, this decouples Eqs. (4.1) and (4.2) to

ȧ = −
(
i∆c +

κ

2

)
a− igσ + iϵ

√
κ (A.50)

σ̇ = −
(
i∆d +

γ

2

)
σ − iga (A.51)

therefore making a solution obtainable straightforwardly. The approximation of σza = −a is
very simple and is able to obtain good results as long as the drive is low compared to the
dissipation, which makes the assumption of a low photon number reasonable. However, the
condition of a low photon number is a bit restrictive.
Applying the same assumption to the prodiabatic elimination in Eq. (5.10), we replace the

term proportional to σza by −a. This eliminates the need to invert operators, as the equations
of motion become immediately linearized. Under this assumption, the prodiabatic elimination
can be computed to any desired order but is limited by the assumption of a low photon number.

A.5.2. Boundary Layer Theory

In addition to the method of multiple scales, we also explored boundary layer theory, another
approach within the framework of singular perturbation techniques. Boundary layer theory
aims to bridge the long-time behavior, as described by the adiabatic elimination, with the short-
time dynamics. The primary reference for this method is [32]. While boundary layer theory
successfully incorporates the initial conditions into the solution, it is unable to extend beyond
the results achieved through adiabatic elimination. The form of the cavity field operator results
in

a(t) = a(0)e−
κ
2
t +

2i

κ
(gσ(0)− E)e−

κ
2
t − 2i

κ
(gσ(t)− E) , (A.52)

where the σ(t) in the expression is given by the adiabatic elimination and again we replace the
total drive strength by ϵ

√
κ → E. This approach gives rather nice results but has the problem of

not going beyond the adiabatic elimination, it simply connects a solution in short-time behavior
to the long-time one. Further if one would use something related to the steady state, for example,
the photon reduces steady-state of Eq. (4.17), as the initial state, the method would expect that
we can use the adiabatic elimination to approximate a(0) as a(0) = −2i

κ (gσ(0) − E). But
in this case, note that we would end up with a(t) = −2i

κ (gσ(t) − E), which is the adiabatic
elimination. So for an initial state related to the steady state, the method will give analogous
results to the adiabatic elimination. Therefore it will not result in a different approximation of
the g(2)-function, which of course is a shortcoming if we want to go beyond adiabatic elimination.
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