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Abstract
Geometric phases are of broad interest in mod-
ern physics due to their potential for robust
quantum computation and their widespread oc-
curence. In this project thesis we investigate the
geometric phases arising in dissipative quantum
systems exhibiting a limit cycle and their pos-
sible measurement. We show that a quantum
limit-cycle system reveals a geometric phase by
providing the following two new insights: First,
the van der Pol spin one system, prepared in
its steady state and with its quantization axis
slowly rotated, attains a geometric phase that
persists with finite gain and damping rates,
as long as adiabaticity is retained. Secondly,
through further research into the existing liter-
ature and numerical testing we found that this
phase is in general not measurable in the orig-
inally envisaged way through a Mach-Zehnder
interferometer.
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Introduction

Geometry has always had a central place in both mathematics and physics. It
helps us understand deep connections in our universe by engaging the large
visual part of our brain, it again and again puts natures laws in exceptionally
elegant form and it often stands outside of time by considering the inherent
properties of shapes and spaces. In quantum systems geometry manifests itself
through the structure of the Hilbert space which is the state space of physical
systems in quantum mechanics. In this project thesis we treat geometric phases
which arise as a consequence of the evolution of quantum states through this
space. These phases embody the aforementioned characteristics of geometry
beautifully and may in the future serve as a way of achieving robust quantum
computation [13]. We treat geometric phases arising in the evolution of quantum
systems that are in contact with an environment. These phases owe their name
to the fact that they are not a product of time evolution but are a geometric
property of the state space of the system under consideration. More precisely we
will consider geometric phases of a quantum system exhibiting a limit cycle in
phase space, namely the van der Pol spin one system introduced in [12]. In this
endeavour we build on the work done in the masters thesis Geometric Phases in
Limit-Cycle Systems by Lea Fricker under the supervision of Prof. Christoph
Bruder and Dr. Alexandre Roulet [6]. Building on their work concerning the
limiting case of a system without coupling to the environment we focus on
extending the calculation of geometric phases to the case of systems interacting
with the environment. We also investigate the possibility of experimentally
detecting these geometric phases in an interferometer and discuss the approach
to predict the outcome of such an experiment.
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Chapter 1

Theoretical Background

Though seldomly treated in undergraduate courses, geometric phases (GP) are
a recurring phenomenon in both classical and quantum physics. They appear
in simple mechanical systems, see Subsection 1.1, in condensed matter systems,
in quantum-chemistry, cold atoms and more [14]. They are phases picked up
by a system that undergoes cylic adiabatic evolution and are generally due to
the geometry of the underlying parameter space. Since Berry [2] showed in
1984 that for the case of cyclic adiabatic evolution of non-degenerate quantum
states, the quantum geometric phase too is a consequence of parameter space
geometry, it has received much attention. Our focus here lies on the case of
geometric phases arising in dissipative quantum systems. Quantum states in
such systems are in general mixed states and a generalization of the geometric
phase for pure states to mixed states is needed. In this chapter we first provide
some intuition using an example from classical physics, then explain the concept
of geometric phases for pure states and detail two notions of geometric phases
for mixed states. An extensive introduction to the topic of geometric phases in
physics can be found in [3], [1] or [4].

1.1 Classical Example
To gain some intuition on the geometric phase we will work through a classical
example of a geometric phase, mentioned in [1], namely the Foucault pendulum.
We will follow the general treatment of the problem in [18] here but shorten the
derivation of the geometric phase using basic notions of differential geometry.
The Foucault pendulum is a simple pendulum suspended high above the ground
and set into planar motion. We will in the following model earth as the 2-sphere
S2 embedded in R3 and equipped with a notion of parallel transport through
the Levi-Civita connection. Further we neglect non-isotropic friction and we
assume that the motion of the pendulum is restricted to the plane of oscillation
which passes through the center of the sphere. This assumption is sometimes
called the assumption of adiabaticity because it is justified if the frequency of
the pendulums oscillation is much larger than the frequency of earths rotation
[18]. The metric on the sphere expressed through standard spherical coordinates
is as follows,

g = r2dθ2 + r2 sin2 θ2dφ2. (1.1)
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With the Levi-Civita connection we obtain the Christoffel symbols,

Γφφθ = Γφθφ =
cos θ

sin θ
, (1.2)

Γθφφ = − sin θ cos θ, (1.3)

the other Γijk vanish. We now model the orientation of the plane of oscillation
by a vector p at fixed angle θ0 that is being parallely transported around the
sphere, i.e. along the φ coordinate. In order to be parallely transported along
the φ coordinate, p must satisfy the parallel transport condition,(

∇ ∂
∂φ
p
)α

=
∂

∂φ
pα + Γαβγp

β . (1.4)

With the Christoffel symbols from above this leads to two differential equations,

∂

∂φ
pθ − sin θ cos θpφ = 0, (1.5)

∂

∂φ
pφ +

cos θ

sin θ
pθ = 0, (1.6)

which can be solved to find the general solution,

pθ = a cos(φ cos θ) + b sin(φ cos θ), (1.7)

pφ = −a sin(φ cos θ)

sin θ
+ b

cos(φ cos θ)

sin θ
a, b ∈ R. (1.8)

From now on we use the canonical basis {∂θ, ∂φ} of the tangent space defined at
each point. Inserting the condition that the pendulum initially oscillates from
north to south, i.e. p = ∂θ|(θ0,0), and starts at θ = θ0 we get the solution,

pθ = cos(φ cos θ0), pφ = − sin(φ cos θ0)

sin θ0
. (1.9)

After being parallely transported once around the sphere, i.e. φ = 2π, p has the
following form,

p = cos(2π cos(θ0)) ∂θ|(θ0,2π) −
sin(2π cos θ0)

sin θ0
∂φ|(θ0,2π) , (1.10)

which is in general not equal to the initial p. We can further compute the angle
γ between p before and after the revolution to find the angle by which the plane
of oscillation differs after one rotation of the earth around its axis:

γ = cos−1

(
p0 · p2π

|p0||p2π|

)
= 2π cos θ0. (1.11)

Equivalently this result can be expressed as γ = −2π sin(λ) with λ being lati-
tude. With that we recover the result from [18]. This result and the approach we
took to arive at it highlight the fact that the geometric phase, here the rotation
angle of the plane of oscillation, is a consequence of geometry and independent
of time. From our derivation it is evident that the time it takes the earth to
rotate is irrelevant to the phase γ, as long as the assumption of adiabaticity
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pθ0

γ pθ2π

Figure 1.1: Sketch of the geometric phase γ aquired when the vector pθ0 is
parallely transported along φ by 2π.

holds. In this particular case, the geometric phase arises due to the curvature
of the sphere. Being transported in ordinary two-dimensional Euclidean space,
the plane of rotation of the Foucault pendulum would have been fixed. More-
over considering our result one finds that the geometric phase γ vanishes at the
poles and at the equator, hinting at a possible connection to the solid angle
enclosed by the path. This connection can be made explicit using the Gaus-
Bonnet theorem and finds application in the treatment of geometric phases for
generic two-level Hamiltonians such as a Quantum Bit (Qubit) [2].

1.2 Pure State Geometric Phase

1.2.1 Berry Phase
Before diving into the more complicated case of mixed states we will partly
reproduce the seminal result by Berry on geometric phases of pure states [2].
In his paper published in 1984 he derived an explicit formula to compute the
geometric phase of a non-degenerate quantum system undergoing cyclic adia-
batic unitary evolution. Even more importantly he showed that this phase only
depends on the geometry of the parameter space and is gauge-invariant.
Let us consider a Hamiltonian Ĥ that depends on a set of parameters ~R =
(R1, . . . , Rk) ∈ Rk and suppose that we know the eigenvalues and eigenstates of
this Hamiltonian depending on the parameters,

Ĥ(~R)
∣∣∣n(~R)

〉
= En(~R)

∣∣∣n(~R)
〉
. (1.12)

The parameters ~R can themselves depend on time and evolution of the system
between t = 0 and t = T corresponds to a path Γ : [0, T ] → Rk, t 7→ ~R(t) in
the space of parameters. A state of this system |ψ(t)〉 prepared in one of the
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~R(T )

~R(0)R1

R2

R3

Figure 1.2: The path Γ in blue, traversed in parameter space during the evolu-
tion of the system in time from t = 0 to t = T .

eigenstates
∣∣∣n(~R(0))

〉
obeys the Schrödinger equation,

Ĥ(~R(t)) |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 , (1.13)

and if evolved adiabatically will remain an instantaneous eigenstates of the
Hamiltonian and be in the state

∣∣∣n(~R(t))
〉

at time t. We can therefore write
|ψ(t)〉 as follows,

|ψ(t)〉 = e−
i
~
´ t
0
En(~R(s))dseiγn(t)

∣∣∣n(~R(t))
〉
. (1.14)

The first exponential contains the well-known dynamical phase while the second
exponential contains the geometric phase γn(t). Inserting Eq. (1.14) into Eq.
(1.13) we get the following condition on γn(t):

γ̇n(t) = i
〈
n(~R(t))

∣∣∣ d

dt

∣∣∣n(~R(t))
〉

= i
〈
n(~R(t))

∣∣∣∇~Rn(~R(t))
〉
· ~̇R(t). (1.15)

Integrating this expression and substituting ~R(t) in the integral we find that
the geometric phase γn loses its dependence on time,

γn(Γ) = i

ˆ
Γ

〈
n(~R)

∣∣∣∇~Rn(~R)
〉
· d~R. (1.16)

So we see that this phase factor is indeed only depending on the path Γ in
parameter space and completely independent on how that path is traversed in
time. Now in order to be a measurable quantity this phase has to be gauge-
invariant – at least under certain conditions to be specified. For that we consider
a second state |ψ′(t)〉 also prepared in an eigenstate but different from our
previous state by a complex number of modulus one,

|ψ′(t)〉 = e−iθ(
~R) |ψ(t)〉 , (1.17)
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where θ(~R) is an arbitrary function. By the same procedure as above we find
that the geometric phase γ′n belonging to this state has to fulfill the condition,

γ̇′n(t) = i 〈n(R(t))| e−iθ(~R)
∣∣∣∇~Re

−iθ(t)n(~R(t))
〉
~̇R(t)

= i
(〈
n(~R(t))

∣∣∣∇~Rn(~R(t))
〉

+∇~Rθ(
~R)
)
Ṙ(t). (1.18)

Integrating this we find,

γ′n(Γ) = γn(Γ) + θ(~R(0))− θ(~R(T )), (1.19)

and hence the geometric phase γn is in general not gauge-invariant. For a
closed path C however we have ~R(0) = ~R(T ) which leads to γ′n = γn so in this
particular case the geometric phase is gauge-invariant. In a three-dimensional
parameter space this result can be derived even more elegantly using basic vector
calculus. In the case of a closed loop, Eq. (1.16) shows an integral along a closed
curve C that bounds a surface S. This integral can be rewritten into a surface
integral using Stokes theorem,

γn(C) = i

˛
C

〈
n(~R)

∣∣∣∇~Rn(~R)
〉
d~R = i

‹
S

(
~∇×

〈
n(~R)

∣∣∣∇~Rn(~R)
〉)
d~a. (1.20)

If we now look at how the integrand changed under gauge transformations, we
find that the only term we had to add was the gradient of a function which
vanishes in the surface integral. Due to this, the term i

〈
n(~R)

∣∣∣∇~Rn(~R)
〉

is
sometimes called the Berry vector potential.

1.2.2 Pancharatnam Phase
In preparation of the more general case of geometric phases for mixed states
we need to mention the Pancharatnam relative phase and how the Berry phase
relates to it. We showed above that the Berry phase is only gauge-invariant if the
evolution of the underlying system is cyclic and therefore a reasonable notion of
geometric phase was only possible for this scenario. After Berrys discovery, the
concept of geometric phases was extended to arbitrary pure state evolution by
building on the work of S. Pancharatnam on geometric phases of polarized beams
passing through cystals. To explain that connection we shorten and repeat the
respective section in [14]. Let |φ(0)〉 and |φ(τ)〉 be two non-orthogonal states on
a path Γ: [0, τ ]→ H, t 7→ |φ(t)〉. The relative phase between these two states is
given by the Pancharatnam relative phase arg(〈φ(0)|φ(τ)〉) and can be seen as
the global phase that contains both the dynamic and geometric contributions
aquired during the evolution along Γ. With the same idea we can define local
phase changes as the following limit,

lim
δt→0

ˆ τ

0

arg(〈φ(t)|φ(t+ δt)〉)dt = −i
ˆ τ

0

〈
φ(t)

∣∣∣φ̇(t)
〉
dt. (1.21)

If we now subtract the local phase changes from the global phase change we end
up with the geometric phase,

γ[Γ] = arg(〈φ(0)|φ(τ)〉) + i

ˆ τ

0

〈
φ(t)

∣∣∣φ̇(t)
〉
dt. (1.22)
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This geometric phase is invariant under gauge transformations [15] and applies
to any path Γ with nonorthogonal endpoints |ψ(0)〉 , |ψ(τ)〉. The Berry phase,
seen from this perspective, corresponds to the following special phase choice,

|ψ(t)〉 = e−iarg(〈φ(0)|φ(t)〉) |φ(t)〉 . (1.23)

For cyclic evolution we have arg(〈ψ(0)|ψ(τ)〉) = 0 and hence the geometric phase
is,

γ[Γ] = i

ˆ τ

0

〈
ψ(t)

∣∣∣ψ̇(t)
〉
dt, (1.24)

as found in Eq. (1.16).

1.2.3 Parallel Transport
In the framework of global and local phase changes presented above, we can
define a notion of parallel transport for pure states. This is analogous to the
condition we set by demanding that our vector fulfills the parallel transport
condition in the classical example of the Foucault pendulum. Parallel transport
of a pure state simply refeers to the state not picking up any phase between t
and t+ δt along its way. These are exactly the local phase changes and hence,
parallel transport means that no local phases are being picked up or equivalently,〈

φ(t)
∣∣∣φ̇(t)

〉
= 0, t ∈ [0, τ)⇒ i

ˆ τ

0

〈
φ(t)

∣∣∣φ̇(t)
〉
dt = 0. (1.25)

If this condition is fulfilled, |φ(t)〉 is said to be parallely transported and the
geometric phase equals the Pancharatnam relative phase. Therefore if one wants
to measure a geometric phase in an interferometer, see Fig. 1.3, one has to ensure
either that the system is parallely transported or that the dynamical phase is a
multiple of 2π. In both cases only the geometric phase remains as the relative
phase accumulated during the evolution.

1.3 Geometric Phases for Mixed States
We now turn to the more general concept of geometric phases for mixed states.
For this extension the two notions of Pancharatnam phase and parallel transport
from the pure state geometric phase will prove to be crucial, since the extension
follows this general procedure:

1. Define a concept of relative phase between mixed states,

2. set parallel transport conditions to fix the independent phase factors,

3. measure the geometric phase when these conditions are met, i.e. when the
relative phase equals the geometric phase.

1.3.1 Geometric Phases for Mixed States in Interferome-
try

To measure the geometric phase of a system one has to perform interference
measurements. This way the system that has undergone a time evolution aquir-
ing some geometric phase can be compared to the same system before and the
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geometric phase will become visible in the interference pattern. A reasonable
idea to extend the notion of geometric phases to mixed states is thus to orient
oneself on this relation to interference experiments. This approach was taken in
[15] to introduce the total phase of a mixed state undergoing unitary evolution.
It turns out that one can find this geometric phase as the coherent average
over the pure states for an initially diagonal mixed state. We will eventually
be interested in the geometric phase of a mixed state undergoing non-unitary
evolution but will first consider the unitary case here. We start by considering
a conventional Mach-Zehnder interferometer (MZI) as seen in Fig. 1.3. We
model the beam entering this interferometer by a two dimensional Hilbert space
HB = {|0〉 , |1〉} and represent the beam splitters, mirrors and relative phase
shifts by unitary operators in its basis.

ÛMB
= |1〉 〈0|+ |0〉 〈1| ,

ÛBSB =
1√
2

(|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|),

ÛPSB = eiχ |0〉 〈0|+ |1〉 〈1| . (1.26)

For a state ρ̂Bin = |0〉 〈0| going into the MZI, the output state,

ρ̂Bout =
1

2
((1 + cosχ) |0〉 〈0|+ sinχ |0〉 〈1| − sinχ |1〉 〈0|+ (1− cosχ) |1〉 〈1|),

gives rise to a firing probability p0 = 1
2 (1 + cosχ). The relative phase shift χ

can therefore be detected in the firing probabilities p0, p1. Our goal now is to
derive an expression for the firing probabilities if additional degrees of freedom
of a system entering the MZI experience a unitary time evolution in the upper
arm. To do this we consider a second Hilbert space of the system S, {|k〉S}k.
We further assume that the initial density operator of the system is diagonal in
this basis,

ρ̂0S =

N∑
k=1

ωk |k〉 〈k| , (1.27)

and can change inside the interferometer, being acted on by a unitary operator,

ρ̂0S → ÛS ρ̂0S Û
†
S . (1.28)

The operators describing the beam splitters, mirrors and the phase shift leave
the state of the internal system unchanged and can be lifted into the combined
Hilbert space, ÛM = ÛMB

⊗ ÎS , ÛBS = ÛBSB ⊗ ÎS . We further introduce the
unitary operator,

Û = |1〉 〈1| ⊗ ÛS + eiχ |0〉 〈0| ⊗ ÎS , (1.29)

to describe the time evolution inside the interferometer. For a state

ρ̂in = |0〉 〈0| ⊗ ρ̂Sin (1.30)

going into the interferometer, we now get the outgoing state,

ρ̂out = ÛBÛM Û ÛB ρ̂inÛ
†
BÛ
†Û†M Û

†
B , (1.31)
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ρin χ

γ

p1

p0

Figure 1.3: Setup of a MZI. It consists of two beam splitters (dark blue) and
two mirrors (cyan). The combined state of the beam and the internal system
enters the MZI, the beam experiences a phase shift χ in the lower arm whereas
the internal system undergoes an evolution aquiring a phase γ in the upper
arm. The two detectors (green) measure wether the state exits the second beam
splitter in the horizontal or vertical direction.

which yields the firing probability p0 as follows,

p0 =
1

2

[
1 + |Tr(ÛS ρ̂Sin)| cos

(
χ− arg

(
Tr(ÛS ρ̂Sin)

))]
. (1.32)

The interference oscillations produced by the phase shift χ are thus shifted by
φ = arg

(
Tr(ÛS ρ̂Sin)

)
and this phase difference reduces to the Pancharatnam

phase difference for pure states [15]. The additional phase shift φ can be con-
sidered the relative phase of the mixed state ρ̂S aquired during the evolution
represented by ÛS . We leave out the exact treatment on the parallel transport
conditions, this can be found in [15]. In short we demand that each eigenstate
of the mixed state is itself parallely transported, meaning it obeys the condition
in Eq. (1.25) . When these parallel transport conditions are met, the relative
phase φ equals the geometric phase of the mixed state ρ̂S and can be detected
in the interferometer.

1.3.2 Kinematic Approach to the Mixed State Geometric
Phase in Nonunitary Evolution

We now turn to the notion of geometric phases for mixed states undergoing
non-unitary, hence dissipative, evolution. The central idea will be the one of
purification. The mixed state is represented by a pure state in a higher dimen-
sional Hilbert space whose partial trace over the ancillary Hilbert space repro-
duces the original mixed state. One then considers the Pancharatnam relative
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phase of this purified state under additional parallel transport conditions. This
process makes use of an ancilla that is not unique and in general the geometric
phase of a mixed state in nonunitary evolution will depend on this ancilla [11],
[5]. A straightforward generalization of the interference measurement presented
above where only the system itself and not the ancilla is considered, is therefore
not possible. In this subsection we will reproduce the approach to the geometric
phase for mixed states in nonunitary evolution that was proposed in [17]. Most
importantly we derive a formula for the geometric phase of a mixed state un-
dergoing nonunitary, nondegenerate evolution. We consider a quantum system
with N -dimensional Hilbert space. An evolution of the state of the system may
be described as the path,

P : t ∈ [0, τ ]→ ρ̂(t) =

N∑
k=1

ωk(t) |φk(t)〉 〈φk(t)| , (1.33)

where the eigenvalues ωk(t) are assumed to be non-negative and non-degenerate.
The case of degenerate eigenvalues is treated in [17] but will not concern us
in this report. The first step in deriving a formula for the geometric phase
γ, associated to the path P in the Hilbert space H of the quantum system,
is to lift the state to a pure state in a larger Hilbert space. This procedure
called purification means we consider the combined Hilbert space H ⊗ Ha of
our systems and an ancillary system a. The purification is chosen such that the
original state ρ̂(t) can at all times be obtained from the purified state |Ψ(t)〉 by
taking the partial trace of |Ψ(t)〉 〈Ψ(t)| over the ancilla a. We will assume in
the following that the dimension of the ancillas Hilbert space equals that of the
systems Hilbert space. The purified state is then given by,

|Ψ(t)〉 =

N∑
k=1

√
ωk(t) |φk(t)〉 ⊗ |ak〉 ∈ H ⊗Ha, t ∈ [0, τ ]. (1.34)

To assign a geometric phase to the mixed state ρ(t) we now consider the Pan-
charatnam relative phase between the purified state at time zero |Ψ(t)〉 and the
purified state at time τ , |Ψ(τ)〉,

α(t) = arg(〈Ψ(0)|Ψ(τ)〉) = arg

(
N∑
k=1

√
ωk(0)ωk(τ) 〈φk(0)|φk(τ)〉

)
. (1.35)

Using the orthonormality of the bases {|φk(0)〉}, {|φk(τ)〉} we rewrite this phase
as follows,

α(t) = arg(〈Ψ(0)|Ψ(τ)〉) = arg

(
N∑
k=1

√
ωk(0)ωk(τ) 〈φk(0)| V̂ (τ) |φk(0)〉

)
,

(1.36)
with

V̂ (t) = |φ1(t)〉 〈φ1(0)|+ · · ·+ |φN (t)〉 〈φN (0)| . (1.37)

With the geometric phase being an inherent property of the path P only we
need to remove the dependency of the phase α(t) on the purification. We do
this by noting that there is an equivalence set S of unitaries ˜̂

V (t) that realize
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the path P,
˜̂
V (t) = V̂ (t)

N∑
k=1

eiθk(t) |φk(0)〉 〈φk(0)| , (1.38)

where θk(t) are real time-dependent parameters that fulfill θk(0) = 0. We now
choose V̂ ‖(t) ∈ S such that the parallel transport conditions

〈φk(0)| V̂ ‖†(t) ˙̂
V ‖(t) |φk(0)〉 = 0, k = 1, . . . , N, (1.39)

are fulfilled. In the case where these parallel transport conditions are fulfilled,
the relative phase α(t) equals the geometric phase γ[P]. This choice determines
the time-dependent parameters,

θk(t) = i

ˆ t

0

〈φk(0)| V̂ †(s) ˙̂
V (s) |φk(0)〉 ds. (1.40)

Taking this expression for V̂ (t) we obtain the formula for the geometric phase
γ associated to the path P,

γ[P] = arg

(
N∑
k=1

√
ωk(0)ωk(τ) 〈φk(0)|φk(τ)〉 e−

´ τ
0 〈φk(t)|φ̇k(t)〉 dt

)
. (1.41)

This notion of the geometric phase fulfills the following conditions: It is gauge in-
variant, it reduces to known results for unitary evolution and it is experimentally
testable in principle [17]. Interpreting this formula in the context of pure state
geometric phases one could say that the geometric phase here is the sum over
the geometric phases of each eigenstate. From the global phase of each eigen-
state 〈φk(0)|φk(τ)〉 we subtract the local phase changes −i

´ τ
0

〈
φk(t)

∣∣∣φ̇k(t)
〉
dt

by multiplication with the exponential. In the case where our system is paral-
lely transported, we have α(τ) = γ[Γ] and the geometric phase can be measured
in an interferometer where the purified state Ψ(0) is used as an input state.
Further details on the evolution Ψ(0) undergoes can be found in [17].

1.4 Limit Cycle
We recall this concept here because the van der Pol spin one system treated
in Section 3.3 is a system exhibiting a limit cycle. Limit cycles are closed tra-
jectories in the phase space of a dynamical system that attract at least one
other trajectory [16]. They appear in the study of nonlinear systems and often
come as attractors of differential equations modelling self-sustained oscillation.
Self-sustained oscillators are an example of classical dissipative systems where
an internal supply of energy keeps the oscillations of a dissipative system go-
ing. Trajectories on the limit cycle are stable with regards to their amplitude
and neutral with regards to their phase. Systems exhibiting limit cycles there-
fore lend themselves to synchronization. The concept of the limit cycle in the
quantum case is analogous to the classical case as has been demonstrated in [7].
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Chapter 2

Theoretical Analysis

2.1 Semi-analytical Formula
Solutions to dissipative quantum systems in closed analytical form are rare and
beyond the simplest models it is often impossible to solve the differential equa-
tions arising from the Quantum Master Equation (QME) by hand. To nonethe-
less be able to compute the geometric phase for mixed states in non-unitary
evolution, we opted for a semi-analytical approach. We employ a numerical
solver provided by the QuantumOptics.jl package in Julia to get the time evolu-
tion of our system. For an elementary example of this procedure, see Appendix
C. We then diagonalize the density matrix for each timestep and using numer-
ical differentiation and integration compute the terms of Eq. (1.41). When
diagonalizing we adopt the convention that the first entry of each eigenstate is
real. This means we always use the convention for the Berry phase because the
eigenstates cannot pick up a local phase and the Pancharatnam phase will vanish
for a closed path. The differentiation is done using a fourth-order symmetrical

Algorithm 1: Semi-analytical calculation of the geometric phase (GP)
Input : H, ρ0, parameters
Output: GP

1 Compute time evolution ρt = [ρ(t1), ρ(t2), . . . , ρ(tn)] ;
2 Compute the eigenstates |φk(ti)〉 and eigenvalues ωk(ti) for each ρ(ti);

3 Differentiate the eigenstates to obtain
∣∣∣φ̇k(ti)

〉
;

4 Integrate
〈
φk

∣∣∣φ̇k〉 over time;

5 Compute GP using Eq. (1.41).

difference quotient and the integration is done using the extended Simpson rule.
For details on the implementation of the numerical procedures see Appendix C.
We will test this approach to computing the geometrical phase in the case of
pure Qubit dephasing, Sec. 3.2, and the van der Pol spin one system, Sec. 3.3.

14



2.2 Rotating Frame
The second system we consider in this chapter is the van der Pol limit cycle
oscillator whose quantization axis is slowly rotated. This means that the Hamil-
tonian Ĥ(t) and the jump operators Γ̂i(t) are rotated, i.e. Ĥ(t) = R̂(t)Ĥ0R̂

†(t),
Γ̂i(t) = R̂(t)Γ̂0iR̂

†(t) (see Fig. 3.2). We now derive approximate formulas for
the geometric phase in this scenario using perturbation theory. We consider
a time-dependent rotation operator R̂(t) that acts as a transformation to a
rotating frame and is unitary. The initial QME is given as follows,

i~
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
+
∑
i

D
[
Γ̂i(t)

]
ρ̂(t), (2.1)

D
[
Γ̂
]
ρ̂ = Γ̂ρ̂Γ̂† − 1

2

{
Γ̂†Γ̂, ρ̂

}
,

and the mixed state is assumed to transform as,

ρ̂(t) = R̂(t)ρ̂rot(t)R̂
†(t). (2.2)

Then the transformed density matrix ρ̂rot(t) obeys the following equation,

i~
d

dt
ρ̂rot(t) =

[
R̂(t)†Ĥ(t)R̂(t)− i~R̂†(t) ∂

∂t
R̂(t), ρ̂rot(t)

]
(2.3)

+
∑
i

D
[
R̂†(t)Γ̂i(t)R̂(t)

]
ρ̂rot(t). (2.4)

For our Hamiltonian and Lindblad operators as assumed above, Eq. (2.4) takes
the following form,

i~
d

dt
ρ̂rot(t) =

[
Ĥ0 − i~R̂†(t)

∂

∂t
R̂(t), ρ̂rot(t)

]
+
∑
i

D
[
Γ̂0i

]
ρ̂rot(t). (2.5)

To obtain solutions for ρ̂(t) one can now solve for ρ̂rot(t) and then use Eq. (2.2)
to get ρ̂(t).

2.2.1 Perturbative Solutions
Additional to the rotating frame approach we employed perturbation theory to
obtain solutions to for the steady state in the van der Pol spin one system. For
notational purposes we will denote the density matrix in the rotated frame as
χ̂(t) from now on. We expanded χ̂(t) into a power series in ω,

χ̂(t) = χ̂(0)(t) + ωχ̂(1)(t) + . . . , (2.6)

and focused only on linear terms in ω to get an approximation for slow rotations,

χ̂(t) ≈ χ̂(0)(t) + ωχ̂(1)(t). (2.7)

For a Hamiltonian consisting of an unperturbed part Ĥ0 and a linear perturba-
tion in ω,

Ĥ = Ĥ0 − i~R̂†(t)
∂

∂t
R̂(t) := Ĥ0 + ωĤ1, (2.8)
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this leads to two differential equations for χ̂(0) and χ̂(1)(t),

d

dt
χ̂(0)(t) = − i

~

[
Ĥ0, χ̂

(0)(t)
]

+
∑
i

D
[
Γ̂0i

]
χ̂(0)(t),

d

dt
χ̂(1)(t) = − i

~

[
Ĥ0, χ̂

(1)(t)
]
− i

~

[
Ĥ1, χ̂

(0)(t)
]

+
∑
i

D
[
Γ̂0i

]
χ̂(1)(t), (2.9)

where the first one is just the QME for the unperturbed Hamiltonian Ĥ0. Ex-
panding χ̂(0) and χ̂(1) in the basis of Gell-Mann matrices λ̂i,

χ̂(0)(t) =
1

3

(
1 +

8∑
i=1

ci(t)λ̂i

)
, χ̂(1)(t) =

1

3

(
b0(t)1 +

8∑
i=1

bi(t)λ̂i

)
, (2.10)

one can derive differential equations for the coefficients {ci}, {bi}. In the case
of the van der Pol system it suffices to derive the steady state χ̂steady since
the rotation is performed adiabatically. Having determined both coefficients
χ̂

(0)
steady, χ̂

(1)
steady of the steady state we use that χ̂(0)

steady is diagonal and employ
time-independent nondegenerate perturbation theory to obtain the eigenvalues
and eigenvectors of χ̂steady to first order in ω,

wk ≈ w(0)
k + ω

〈
v

(0)
k

∣∣∣H1

∣∣∣v(0)
k

〉
, (2.11)

|vk〉 ≈
∣∣∣v(0)
k

〉
+ ω

∑
j 6=k

∣∣∣v(0)
j

〉 〈v(0)
j

∣∣∣H1

∣∣v0
k

〉
w0
k − w0

j

. (2.12)

From these eigenstates we obtain the eigenstates of the rotated steady state by
applying the rotation operator R̂(t),

|φk(t)〉 = R̂(t) |vk〉 . (2.13)

With the rotation operator R̂(t) having the form e−iωtĤ1 we can now evaluate
the terms containing the eigenstates in Eq. (1.41) as follows,

〈φk(0)|φk(τ)〉 = 〈vk| R̂(0)R̂(τ) |vk〉 , (2.14)〈
φk(t)

∣∣∣φ̇k(t)
〉

= −iω 〈vk| Ĥ1 |vk〉 . (2.15)
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Chapter 3

Applications

3.1 Mach-Zehnder-Interferometer Simulation
To check our results for the relative phases obtained in the systems we treat, we
simulated the Mach-Zehnder interferometer introduced in Subsection 1.3.1. This
simulation was done using the package QuantumOptics introduced in Appendix
B and with the following choice of Hamiltonian,

Ĥ = ĤS ⊗ |1〉 〈1|B −
χ

T
ÎS ⊗ |0〉 〈0|B , (3.1)

for the time evolution inbetween the two beam splitters. For details on the
implementation, see Appendix B.1.

3.2 Qubit Pure Dephasing Dynamics
As a first application and as a way of testing our semi-analytical implementation
of the formula for the geometric phase in non-adiabatic evolution, we consider
the example of a Qubit subjected to pure dephasing. This system is also being
treated in [17], in the following we extend the analytical solution presented
there to initial conditions on the whole Bloch sphere. With the exact solution
we can then perform tests of our semi-analytical implementation. The Qubit is
subjected to the Hamiltonian,

Ĥ =
(η

2

)
σ̂z, (3.2)

and experiences dephasing modeled by the Lindblad operator,

Γ̂ =

√
Λ

2
σ̂z. (3.3)

Here η is the precession rate and Λ the strength of dephasing. The given systems
dynamics are governed by the QME,

d

dt
ρ̂(t) = −i

[
ω
σ̂z
2
, ρ̂(t)

]
+

Λ

2
D[σ̂z]ρ̂(t). (3.4)
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We start from an arbitrary pure state at time t0 = 0 and parametrize the general
solution of the time evolution as follows,

ρ̂(t) =
1

2

(
Î + ~r(t) · ~σ

)
, (3.5)

where ~r(t) = (rx(t), ry(t), rz(t)) is the state-vector on the Bloch sphere and
~σ = (σ̂x, σ̂y, σ̂z) the Pauli vector. The coefficients of this parametrization are
given by

rx(t) = e−Λt(rx(0) cos(ωt)− ry(0) sin(ωt)),

ry(t) = e−Λt(rx(0) sin(ωt)− ry(0) cos(ωt)),

rz(t) = rz(0). (3.6)

The eigenvectors and eigenvalues of the density matrix are,

λ± =
1

2

(
1± e−Λt

√
rx(0)2 + ry(0)2 + e2Λtrz(0)2

)
,

|ψ±(t)〉 =
1

c

(
e−iωt

eΛtrz(0)±
√
rx(0)2+ry(0)2+eΛtrz(0)2

rx(0)+iry(0)

1

)
, (3.7)

c =

√√√√
1 +

(
±eΛtrz(0) +

√
rx(0)2 + ry(0)2 + eΛtrz(0)2

)2

rx(0)2 + ry(0)2
, (3.8)

where |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. Using the polar decomposition

rx(0) = sin(θ0) cos(ϕ0),

ry(0) = sin(θ0) sin(ϕ0),

rz(0) = cos(θ0), (3.9)

these results can be recast into the following form,

λ± =
1

2

(
1±

√
cos2(θ0) + e−Λt sin2(θ0)

)
, (3.10)

|ψ+〉 = ei(ωt+ϕ0)/2 cos

(
θt
2

)
|1〉+ ei(ωt+ϕ0)/2 sin

(
θt
2

)
|0〉 , (3.11)

|ψ+〉 = −ei(ωt+ϕ0)/2 sin

(
θt
2

)
|1〉+ ei(ωt+ϕ0)/2 cos

(
θt
2

)
|0〉 , (3.12)

where

θt =
(
arctan

(
e−Γt tan(θ0)

)
+ π

)
mod π. (3.13)

This result generalizes Eqs. (19) and (20) in [17]. We now turn to computing
the geometric phase using Eq. (1.41). The overlap between the eigenstates and
their time derivatives are:〈

ψ+(t)
∣∣∣ψ̇+(t)

〉
= −iω

2
cos(θ0) = −iω

2

1√
1 + e−Λt tan2(θ0)

, (3.14)〈
ψ−(t)

∣∣∣ψ̇−(t)
〉

= i
ω

2
cos(θ0) = i

ω

2

1√
1 + e−Λt tan2(θ0)

. (3.15)
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Since λ−(t = 0) = 0 we need only consider the terms corresponding to |ψ+〉 in
Eq. (1.41). Using the general formula,

ˆ t

0

1√
1 + be−as

ds =

[
2

a
artanh

(
1√

1 + be−as

)]t
0

=

[
1

a
ln

(
1 + 1√

1+be−as

1− 1√
1+be−as

)]t
0

, (3.16)

where we used artanh(x) = 1
2 ln ((1 + x)/(1− x)), we obtain,

e−
´ t
0 〈ψ+(s))|ψ̇+(s)〉ds = e

i η4Λ ln

(
(
√

cos2(θ0)+sin2(θ0)e−2Λt)(1−cos(θ0))

(
√

cos2(θ0)+sin2(θ0)e−2Λt)(1+cos(θ0))

)
, (3.17)

such that Eq. (24) from [17] takes the form,

γ(t) = arg

(
e−i

η
2 t cos

(
θt
2

)
cos

(
θ0

2

)
+ ei

η
2 t sin

(
θt
2

)
sin

(
θ0

2

))

+
η

4Λ
ln


(√

cos2(θ0) + sin2(θ0)e−2Λt

)
(1− cos(θ0))(√

cos2(θ0) + sin2(θ0)e−2Λt

)
(1 + cos(θ0))

. (3.18)

For t = T = 2π
η this result simplifies to,

γ(T ) = arg

(
cos

(
θT
2

)
cos

(
θT
2

)
+ sin

(
θT
2

)
sin

(
θ0

2

))

+
η

4Λ
ln


(√

cos2(θ0) + sin2(θ0)e−2ΛT

)
(1− cos(θ0))(√

cos2(θ0) + sin2(θ0)e−2ΛT

)
(1 + cos(θ0))

, (3.19)

which, assuming rz(0) = cos(θ0) ≥ 0 reduces to Eq. (21) of [17]. With the ana-
lytical formula for the geometric phase in this system we were able to benchmark
our semi-analytical function. In all tested configurations for the parameters η, Λ
and the initial conditions given by ~r(0) we observed quartic convergence. For
an example see Fig. 3.1.

3.3 Van der Pol Spin One System
In this section we consider the van der Pol spin one system as an example of a
dissipative quantum system exhibiting a limit cycle. As has been shown in [12],
this system is the smallest system to exhibit a limit cycle in phase space. The
van der Pol spin one system is described by the QME with the free Hamiltonian,

Ĥ0 = ~ω0Ŝz, (3.20)

and the Lindblad operators,

Γ̂1 =

√
gg
2

(√
2ŜzŜ+ − Ŝ+Ŝz

)
, (3.21)

Γ̂2 =

√
gd
2

(
Ŝ2
−

)
, (3.22)
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Figure 3.1: Convergence plot using our semi-analytical formula for the geometric
phase compared to the analytical solution of the Qubit pure dephasing model.
The parameters here were Λ = 0.2, η = 1 and the initial state was determined
by θ0 = π

4 , ϕ0 = 0.

following [7], where gg is the gain rate and gd the damping rate. To adiabatically
change the free Hamiltonian Ĥ0 and the Lindblad operators we subject them
to a rotation given by the rotation operator

R̂(α, t) = e−iωt~n(α)·~S , (3.23)

where ~S = (Ŝx, Ŝy, Ŝz)
T , ~n(α) = (sin(α), 0, cos(α)) and α the opening angle of

the cone seen in Fig. 3.2. We cite the conditions for adiabatic changes of this
system from [6],

ω0 � ω, (3.24)

as well as the conditions for the restriction of the van der Pol limit cycle oscillator
to a three level system,

ω0 � gd � gg. (3.25)

We further cite the steady state without rotation from [7],

ρ̂steady =


gg

3gd+gg
0 0

0 gd
3gd+gg

0

0 0 2gd
3gd+gg

 , (3.26)

which in the limit of gg � gd simplifies to,

ρ̂steady →

0 0 0
0 1

3 0
0 0 2

3

 . (3.27)

20



α

x

y

z

~n

Figure 3.2: Visualization of the rotation that we subject the van der Pol system
to.

Analytical approach

Using the method explained in Subsection 2.2.1, we found the approximate
steady state of the system in the rotating frame by setting both equations in
Eq. (2.9) to zero. For χ̂(0)

steady we recover the steady state for the non-rotating
system,

χ̂
(0)
steady = ρ̂steady =


gg

3gd+gg
0 0

0 gd
3gd+gg

0

0 0 2gd
3gd+gg

 , (3.28)

and for the second coefficient in the perturbation series we get,

χ̂
(1)
steady =

 0 a 0
a∗ 0 b
0 b∗ 0

 , (3.29)

with

a =

(
i(4 + 3

√
2)gggd − 2

√
2ggω0 +

√
2gg(2ω0 − 3igg)

)
2(3gd + gg)(gd + gg + iω0)(3gg + 2iω0)

, (3.30)

b =
i
√

2gd sin(α)

(3gd + gg)(3gg + 2iω0)
. (3.31)

For small values of ω we have

χ̂steady ≈ χ̂(0) + ωχ̂(1) =


gg

3gd+gg
ωa 0

ωa∗ gd
3gd+gg

ωb

0 ωb∗ 2gd
3gd+gg

 , (3.32)

and by applying the rotation we can get the rotated steady state,

ρ̂steady(t, α) = R̂(α, t)χ̂steadyR̂
†(α, t). (3.33)
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Our evolution is adiabatic, so for small ω takes place during long time intervals
compared to the systems inherent dynamics. Therefore we can assume that
the systems stays in its steady state during the rotation and we take ρ̂steady
as a reasonable approximation to the systems state during its evolution. With
this assumption we can now evaluate Eq. (1.41) analytically. Considering the
eigenvalues and eigenstates of χ̂steady as close to the eigenvalues and eigenstates
of χ̂(0) we employ perturbation theory again to find the following approximation
to first order,

w1 = w
(0)
1 , w0 = w

(0)
0 , w−1 = w

(0)
−1, (3.34)

v1 ≈ v(0)
1 +

 0
ω(i(4+3

√
2)gdgg+

√
2gg(−3igg−2ω0)+2

√
2gdω0) sin(α)

2(gd−gg)(gd+gg−iω0)(3gg−2iω0)

0

 , (3.35)

v0 ≈ v(0)
0 +


ω(i(4+3

√
2)gdgg−2

√
2gdω0+

√
2gg(−3igg+2ω0)) sin(α)

2(gd−gg)(gd+gg+iω0)(3gg+2iω0)

0

−
√

2ω sin(α)
3igg+2ω0

 , (3.36)

v−1 ≈ v(0)
−1 +

 0
i
√

2ω sin(α)
3gg+2iω0

0

 . (3.37)

Here the wk are the eigenvalues and vk the eigenstates of χ̂steady in the rotating
frame and v(0)

k the k-th canonical basis vector in R3. Rotating the eigenstates
yields the eigenstates of ρ̂steady(t, α) and with these we evaluate Eq. (1.41)
as outlined in Subsection 2.2.1 to find a perturbative approximation to the
geometric phase γperturb. The full solution is rather long and intransparent,
we therefore consider the limiting case of no interaction to the environment,i.e.
gg = gd = 0,

γperturb. = (3.38)

arg

(
1

3
+

2

3
e

2πi

(
cos(α)−ω sin2(α)

ω0

)
+

(
ω sin(α)

ω0

)2
(

1 + e
2πi

(
cos(α)−ω sin2(α)

ω0

)))
,

and the case where the rotation frequency ω tends to zero,

γperturb. = arg
(

gd
3gd + gg

+
2gde

2iπ cos(α)

3gd + gg
+
gge
−2iπ cos(α)

3gd + gg

)
. (3.39)

3.3.1 Closed System
We first treat the spin one system without interaction to the environment by
setting the gain rate gg and damping rate gd of our model to zero. Therefore
we effectively consider the rotated free Hamiltonian,

Ĥ(α, t) = R̂(α, t)Ĥ0R̂(α, t)†. (3.40)
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From the eigenstates of the free Hamiltonian Ĥ0 we get the eigenstates of the
rotated Hamiltonian Ĥ(α, t) by simply applying the rotation,

|φ1(α, t)〉 =


(
cos
(
tω
2

)
− i cos(α) sin

(
tω
2

))2
−
√

2 sin(α) sin
(
tω
2

)(
i cos

(
tω
2

)
+ cos

(
α sin

(
tω
2

)))
− sin(α)

2
sin
(
tω
2

)2
 ,

|φ0(α, t)〉 =

−
√

2 sin(α) sin
(
tω
2

) (
i cos

(
tω
2

)
+ cos(α) sin

(
tω
2

))
cos(α)

2
+ cos(tω) sin(α)

2

√
2 sin(α) sin

(
tω
2

) (
−i cos

(
tω
2

)
+ cos(α) sin

(
tω
2

))
 ,

|φ−1(α, t)〉 =

 − sin(α)
2

sin
(
tω
2

)2
√

2 sin(α) sin
(
tω
2

) (
−i cos

(
tω
2

)
+ cos(α) sin

(
tω
2

))(
cos
(
tω
2

)
+ i cos(α) sin

(
tω
2

))2
 .

From these we can find the Berry phase of each eigenstate using the formula for
the pure state geometric phase introduced in Subsection 1.2.1,

γk(α, t) = i

ˆ t

0

〈φk(α, s)|φ̇k(α, s)〉 ds, (3.41)

which for one closed loop, i.e. t =
2π

ω
, yields,

γk(α) = 2π(1− cos(α)) · k, (3.42)

where k ∈ {+1, 0,−1}. During adiabatic evolution the initial mixed state ρ̂steady
stays diagonal in the basis of the rotating Hamiltonian and we can therefore
compute its geometric phase from the geometric phases of each eigenstate as
shown in [15]:

γ = arg

(∑
k

wke
iγk

)
= arg

(
1

3
+

2

3
e−2πi(1−cos(α))

)
, (3.43)

for the steady state from Eq. (3.27) as initial state and where wk are the
diagonal entries of the initial state. With the same assumptions on adiabaticity,
evaluating Eq. (1.41) analytically yields the same result. The analytical solution
obtained through perturbation theory for finite ω reduces to the formula given
in Eq. (3.38) for gg, gd → 0. Lastly we can compute the geometric phase using
our semi-analytical formula. Results for all three approaches are shown in Fig.
3.3. The expression for the interference pattern in the interferometer follows
from the material described in Subsection 1.3.1,

p0 = 〈0|B TrS(ρ̂out) |0〉B =
1

2
(1 + ν cos (χ− γ)),

p1 = 〈1|B TrS(ρ̂out) |1〉B =
1

2
(1− ν cos (χ− γ)), (3.44)

where ν is the visibility given by ν =
∣∣∑

k wke
iγk
∣∣. The observed relative phase

equals the geometric phase here since we are evolving our system adiabatically
for small ω and since the time evolution is chosen such that the dynamical phase
vanishes.
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Figure 3.3: The GP in the closed case for ω = 0.001 and three different ap-
proaches. γadiabatic is obtained using Eq. (3.43) or equivalently by evaluating
Eq. (1.41) in the adiabatic limit and γsemi-ana. is the result of our semi-analytical
implementation of Eq. (1.41). γperturb. is calculated with the perturbative so-
lution from Eq. (3.38) of the GP for finite ω.
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Figure 3.4: GP in the closed case for ω = 0.02 and three different approaches.
γadiabatic is obtained using Eq. (3.43) or equivalently by evaluating Eq. (1.41)
in the adiabatic limit and γsemi-ana. is the result of our semi-analytical imple-
mentation of Eq. (1.41). γperturb. is calculated with the perturbative solution
from Eq. (3.38) of the GP for finite ω. As can be expected from Eq. (3.38), the
corrections to the GP get larger for larger values of α.
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Figure 3.5: Firing probabilities of the MZI for ω = 0.001, ω0 = 1 and χ = π
2 .

The analytical firing probabilities are computed using Eq. (3.44) and the steady
state given in Eq. (3.27). The numerical firing probabilites are computed using
the simulation of the MZI with the same input state.

3.3.2 Open System
We now consider the general case of the van der Pol spin one system where the
gain rate gg and the damping rate gd are no longer zero. In effect this means
we switch on coupling to the environment, modeled by the Lindblad operators
from Eq. (3.22). Here we rely on our perturbative solution to confirm the
result of our semi-analytical formula for small values of ω. As explained in
Subsection 1.3.2, an extension of the interferometric measurement to the case
of non-unitary evolution is only possible with the ancilla system. In effect this
means performing an interferometeric measurement of a pure state where the
van der Pol system would be part of a subspace. We therefore restrict ourselves
to determining the geometric phase of the open system here. For an in-depth
discussion of the intereferometric measurement with non-unitary evolution and
especially with the system considered here, see Appendix A.
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Figure 3.6: Firing probabilities of the MZI in the closed case for ω = 0.02,
ω0 = 1 and χ = π

2 . The analytical firing probabilities are computed using
Eq. (3.44) and the steady state given in Eq. (3.27). The numerical firing
probabilites are computed using the simulation of the MZI with the same input
state. The discrepancy between the numerical result and the one predicted by
the semi-analytical approach is due to the different eigenbasis for nonzero ω
leading to the dynamical phase no longer being a multiple of 2π. This could be
compensated by adjusting the time evolution.
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Figure 3.7: GP in the open case with ω = 0.001, ω0 = 1 and χ = π
2 . The

coupling rates are gg = 0.001 and gd = 0.01. We see that the GP does not
change significantly with respect to the closed case.
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Figure 3.8: GP in the open case with ω = 0.001, ω0 = 1 and χ = π
2 . The

coupling rates are gg = 0.01 and gd = 0.1. We again see that the GP does not
change significantly with respect to the closed case.
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Figure 3.9: GP in the open case with ω = 0.02, ω0 = 1 and χ = π
2 . The

coupling rates are gg = 0.01 and gd = 0.1. Here the perturbative solution and
the semi-analytical solution agree even better than in the closed case, see Fig.
3.4. This is due to the nonzero gain- and damping rates pushing the system
faster into its steady state upon which the perturbative approach relies.
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Conclusion

In this thesis we laid out the basic theory of quantum geometric phases for both
pure states and mixed states. The latter case was needed for our treatment of
non-unitary processes such as the van der Pol spin one system. Since the prob-
lem we wanted to treat, i.e. the van der Pol spin one system, proved not to be
analytically solvable we developed a semi-analytical approach to evaluating the
general formula for the geometric phase in non-unitary evolution given in [17].
This approach was based on solving the QME describing our system through
the use of the QuantumOptics package in Julia and subsequent numerical cal-
culations. We tested this approach with the analytically solvable example from
[17] and slightly extended the analytical solution to arbitrary inital conditions.
Our semi-analytical formula showed quartic convergence in all tested regions of
the parameter space which was to be expected given the accuracy of the em-
ployed numerical procedures. Turning to the van der Pol spin one system we
first considered the limiting case of no interaction to the environment and were
able to analytically derive the geometric phase of this system, both using the
approach of [15] and the general formula given in [17] in the adiabatic limit.
This analytical result agreed well with our semi-analytical implementation of
the general formula from [17] and we were able to produce the expected inter-
ference pattern explained in [15] for small rotation frequencies in our simulation
of the MZI. We investigated the problems that led to the geometric phase not
being computed correctly for the open case in [6] and found out that besides
numerical problems the geometric phase in that case is generally not measurable
with the employed interferometric setup. With our semi-analytical formula, as
well as with an approximate solution obtained through perturbation theory, we
were able to show that the geometric phase in the open case stays close to the
one from the closed case for small gain and damping rates, see Fig. 3.7, and
is well predicted by our semi-analytical formula. We also derived a formula to
predict the interference pattern of the Mach-Zehnder interferometer in the case
of non-zero dissipation. After realizing that the geometric phase in non-unitary
evolution is in general not measurable in this way we discontinued work in that
direction, the results can be found in Appendix A. We finish the endeavour of
showing that a quantum limit-cycle system reveals a geometric phase with two
new insights. For one we found that this phase is in general not measurable in
the envisaged way through a Mach-Zehnder interferometer. On the other side
we are confident that the van der Pol spin one system, prepared in its steady
state and with its quantization axis slowly rotated attains a geometric phase
that also persists with finite gain and damping rates as long as adiabaticity is
retained.
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Appendix A

Interferometry in the
Non-Unitary Case

Trying to extend the measurements of the geometric phase into the case of
non-unitary evolution fails in our case. The proposed method of measuring
the geometric phase in this case from [17] uses the purified state Ψ for the
interference measurement and does not work with the mixed state ρ̂S itself. In
this chapter we present our understanding of the interference pattern of the
Mach-Zehnder interferometer in the case of nonzero gain and damping rates.

A.1 Interference Pattern
In an effort to understand the interference pattern produced in the case of non-
unitary evolution of the internal system we derived expressions for the visibility
and phase shift generalizing the ones given in Subsection 1.3.1. We consider
the Hilbert space of the beam HB = {|0〉B , |1〉B} and the Hilbert space of an
additional system HS = {|n〉S}n together in a combined Hilbert space HB ⊗
HS . States that go into the Mach-Zehnder interferometer therefore have an
additional degree of freedom described by HS and two possible polarizations.
In the cases we investigated, the evolution of the system in its own Hilbert space
is governed by a QME of the following form,

d

dt
ρ̂S(t) = −i

[
ĤS(t), ρ̂S(t)

]
+
∑
i

D
[
Γ̂Si(t)

]
ρ̂S(t), (A.1)

for a given Hamiltonian ĤS(t) and Lindblad operators Γ̂S(t). The beam only
experiences a phase shift given by

ÛPSB = eiχ |0〉 〈0|B + |1〉 〈1|B . (A.2)

We now lift these operations fromHS andHB into the combined spaceHB⊗HS ,
with the systems evolution taking place in the upper arm of the interferometer
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and the phase shift taking place in the lower arm.

ÛMB
→ ÛMB

⊗ ÎS := ÛM , ÛBSB → ÛBSB ⊗ ÎS := ÛBS . (A.3)

Ĥ(t) = |1〉 〈1|B ⊗ ĤS(t)− χ

T
|0〉 〈0|B ⊗ ÎS , (A.4)

Γ̂Si(t)→ |1〉 〈1|B ⊗ Γ̂Si(t) := Γ̂i(t), ρ̂(t) = ρ̂B(t)⊗ ρ̂S(t). (A.5)

Now the time evolution of the whole system in between the two beam-splitters
is governed by the following QME,

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
+
∑
i

D
[
Γ̂i(t)

]
ρ̂(t). (A.6)

To find an expression for the phase shift α observed with the visibility ν we look
at a general state going into the interferometer given as follows,

ρ̂0 = ρ̂0B ⊗ ρ̂0S = |0〉 〈0|B ⊗ ρ̂0S . (A.7)

Through the first beam splitter this state transforms into

ρ̂1 = ÛBS ρ̂0 Û
†
BS =

1

2
(|0〉 〈0|B + |0〉 〈1|B + |1〉 〈0|B + |1〉 〈1|B)⊗ ρ̂0S . (A.8)

Between the two beam splitters, the beam system does not undergo any change
so we can plug 1

2 (|0〉 〈0|B + |0〉 〈1|B + |1〉 〈0|B + |1〉 〈1|B)⊗ ρ̂Q(t) into the QME
to obtain the time evolution. This yields the subsequent equation where we
assumed the existence of only one Lindblad operator Γ̂S for notational purpose,

d

dt
ρ̂(t) =

i

2
(|0〉 〈1|B + |1〉 〈1|B)⊗ ρ̂S(t)ĤS(t)

− i

2
(|1〉 〈0|B + |1〉 〈1|B)⊗ ĤS(t)ρ̂S(t)

+
iχ

2T
((|0〉 〈1|B − |1〉 〈0|B ⊗ ρ̂S(t))) +

1

2

(
|1〉 〈1|B ⊗ Γ̂S ρ̂S(t)Γ̂†S

)
− 1

4
((|1〉 〈1|B + |1〉 〈0|B)⊗ Γ̂†SΓ̂S ρ̂S(t)

+ (|1〉 〈1|B + |0〉 〈1|B)⊗ ρ̂S(t)Γ̂†SΓ̂S), (A.9)

which we rearrange to,

d

dt
ρ̂(t) = − |1〉 〈0|B ⊗

i

2

(
ĤS +

χ

T
I − i

2
Γ̂†SΓ̂S

)
︸ ︷︷ ︸

:=Ĥeff

ρ̂S(t)

+ |0〉 〈1|B ⊗
i

2
ρ̂S(t)

(
ĤS +

χ

T
Î +

i

2
Γ̂†SΓ̂S

)
︸ ︷︷ ︸

=Ĥ†eff

+ |1〉 〈1|B ⊗
1

2

(
−i
[
ĤS(t), ρ̂S(t)

]
+D

[
Γ̂S

])
︸ ︷︷ ︸

:=L̂ρ̂S(t)

ρ̂S(t) (A.10)

=
1

2

(
−i |1〉 〈0|B ⊗ Ĥeff ρ̂S(t) + i |0〉 〈1|B ⊗ ρ̂S(t)Ĥ†eff + |1〉 〈1|B ⊗ L̂ρ̂S(t)

)
.
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Having introducted the effective Hamiltonian Ĥeff and the Lindbladian L̂ we
can formaly solve the time evolution for a time independent Hamiltonian by
defining Ûeff,

Ûeff(t) = e−iĤefft = e−iχ
t
T e−iĤSt−

1
2 Γ̂†S Γ̂St =: e−iχ

t
T Û(t), (A.11)

as the effective time evolution operator. With this we get the formal solution
for the state inbetween the two beam-splitters,

ρ̂2(t) = |1〉 〈1|B ⊗ e
L̂tρ̂0S

+ |0〉 〈0|B ⊗ ρ̂0S + |1〉 〈0|B ⊗ Ûeff(t)ρ̂0S + |0〉 〈1| ⊗ ρ̂0S Û
†
eff(t). (A.12)

To obtain the state exiting the interferometer we have to apply the operator of
the beam-splitter again,

ρ̂3(t) = ÛBS ρ̂2(t) Û†BS (A.13)

=
1

2
((|0〉 〈0|B − |0〉 〈1|B − |1〉 〈0|B + |1〉 〈1|B)⊗ eL̂tρ̂0S

+ (|0〉 〈0|B + |0〉 〈1|B + |1〉 〈0|B) + |1〉 〈1|B)⊗ ρ̂0S

+ (|0〉 〈0|B + |0〉 〈1|B − |1〉 〈0|B − |1〉 〈1|B)⊗ Ûeff(t)ρ̂0S

+ (|0〉 〈0|B − |0〉 〈1|B + |1〉 〈0|B − |1〉 〈1|B)⊗ ρ̂0S Û
†
eff(t))).

With this we can now calculate the firing probability of a detector at the hori-
zontal position p0 or a detector at the vertical position p1:

p0 = 〈0|B tr(ÛBS ρ̂(t)Û†BS) |0〉B = tr
(
eL̂tρ̂0S + ρ̂0S + Ûeff(t)ρ̂0S + ρ̂0S Û

†
eff(t)

)
= tr(eL̂tρ̂0S ) + tr(ρ̂0S ) + tr(Ûeff(t)ρ̂0S ) + tr(ρ̂0S Û

†
eff(t)), (A.14)

p1 = 1− p0. (A.15)

We recall the following useful identity which is a consequence of the QME pre-
serving the trace,

tr(L̂ρ̂) = 0. (A.16)

This helps us to find,

trS(eL̂tρ̂0S ) =

∞∑
k=0

tk

k!
trS(L̂kρ̂0S ) = 1. (A.17)

Further using that tr(ρ̂0S Û
†
eff(t)) = tr

(
Ûeff(t)ρ̂0S

)∗
, we arrive at the final form,

p0 =
1

2

(
1 + ν cos

(
χ
t

T
− α

))
, (A.18)

with ν = |trS(Û(t)ρ̂0S )| and α = arg(trS(Û(t)ρ̂0S )). Using these formulas we
are now able to predict the interference pattern resulting from interferometric
measurements involving non-unitary evolution in the upper arm. For the van
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Figure A.1: Visibility of the interference pattern in the MZI for ω = 0.001,
ω0 = 1 and χ = π

2 , gg = 0.01 and gd = 0.1 compared to the visibility in the
closed case. For this particular combination of parameters the visibility of the
interference pattern in the open case tends to zero, effectively making a detection
of the geometric phase with this setup impossible.

der Pol spin one system without rotation the effective unitary operator is the
following,

Ûeff(T ) = e−iχÎ−iĤ0T− 1
2 (Γ̂†1Γ̂1+Γ̂†2Γ̂2)T , (A.19)

with the Lindblad operators Γ̂1, Γ̂2 and the Hamiltonian Ĥ0 from Section 3.3.
One finds that thus the visibility decays proportional to e−min(gg,gd)T . So for
large damping- and gain rates or equivalently for long times T the visibility of
the interference pattern goes to zero. For an example see Fig. A.3.

A.1.1 Time-dependent Hamiltonian
We now continue the calculation above for the case of a time-dependent Hamil-
tonian ĤS(t). This will be necessary for the treatment of the Van der Pol spin
one system where the spin quantization axis is slowly rotated. We divide up the
time axis from zero to t into N equal subintervals, each of length

ε =
t

N
.

The effective time-evolution operator is then given by a Dyson-series,

Ûeff(t) = I +

∞∑
k=1

(−i)k
ˆ t

0

dt1

ˆ t1

0

dt2 · · ·
ˆ tn−1

0

dtnĤeff(t1)Ĥeff(t2) · · · Ĥeff(tn),

(A.20)
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Figure A.2: Firing probabilities of the MZI for ω = 0.001, ω0 = 1 and χ =
π
2 , gg = 0.001 and gd = 0.01. The dotted line corresponds to the numerical
simulation of the MZI whereas the blue line corresponds to the expected value
of p0 if the relative phase equaled the geometric phase.

that yields a formal solution in the limit of N → ∞ under the assumption
that the series converges. With this we can obtain approximate solutions by
truncating the series.
To sidestep this rather involved procedure we calculated the visibility in the case
of the van der Pol spin one system where the spin quantization axis is slowly
rotated as follows. First we compute Ûeff(t) as if the system were not rotated
and then subsequently add the known contributions of the geometric phase that
we get from the semi-analytical formula:

ν =

∣∣∣∣∣tr
(
Û(t)ρ̂0S

∑
k

eγk(t) |φk(0)〉 〈φk(0)|

)∣∣∣∣∣ , (A.21)

where γk(t) is the geometric phase of the k-th eigenstate φk(0) of ρ̂S(t = 0).
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Figure A.3: Firing probabilities of the MZI for ω = 0.001, ω0 = 1 and χ = π
2 ,

gg = 0.01 and gd = 0.1. As can be seen in Fig. A.1, the visibility for this case
is so small that no interference pattern can be seen.
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Appendix B

The QuantumOptics.jl
package

To simulate the Mach-Zehnder interferometer we utilized the QuantumOptics
package [8] in the programming language Julia. This package is similar to the
Python package QuTip but is built exlusively in Julia. Below a simple example
of how we used the functionalities of the package to solve the QMEs governing
our system’s behaviour.

using QuantumOptics

## Parameters
ω0 = 1
gg = 0.01
gd = 0.1

## Basis
b = SpinBasis(1) # defining basis of Spin-1 system
Sm = sigmam(b) # lowering operator
Sp = sigmap(b) # raising operator
Sz = 1/2*sigmaz(b)
Sx = 1/2*sigmax(b)
Sy = 1/2*sigmay(b)

## Model
Γ1 = sqrt(gg/2)*(sqrt(2)*Sz*Sp-Sp*Sz) # Jump operator 1
Γ2 = sqrt(gd/2)*(Sm*Sm) # Jump operator 2
function H_sys(t,ρ) # System Hamiltonian

H = ω0*Sz
J = [Γ1, Γ2]
Jdagger = dagger.(J)
return H, J, Jdagger

end

## time evolution
tspan = Array(LinRange(0,2*pi,100))
tout, ρt = time evolution.master_dynamic(tspan, ρ_sys, H_sys;)

B.1 Mach-Zehnder-Interferometer
Following is the function used to simulate the Mach-Zehnder-interferometer and
produce the firing probabilities p0, p1 for a given input state ρsys, system Hamil-
tonian Hsys, phase shift χ and simulation parameters.
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function mach_zehnder_interferometer_time_resolved(
ρsys,H_sys,χ,p_master_dynamic

)
# get the system's basis from its density operator
bsys = basis(ρsys)

# define identity operator of the system
Isys = identityoperator(bsys)

# select the input port of the MZI
beam0 = 1
beam1 = 1 - beam0

# unwrap parameters of master_dynamic
maxi, err, tspan = p_master_dynamic

# define basis of beam system
f = FockBasis(1)
f1 = Ket(f, [1,0])
f2 = Ket(f, [0,1])

# define final time
T = tspan[end]

# define beam-splitter operator
bs = Isys ⊗ (( projector(f1)

- projector(f2)
+ (f1 ⊗ dagger(f2))
+ (f2 ⊗ dagger(f1)))/sqrt(2))

# define phase-shift operator
ps = Isys ⊗ ((exp(im * χ) * projector(f1)) + projector(f2))

# define initial state of the beam
ρbeam = beam0 * projector(f1) + beam1 * projector(f2)

# initial state of the MZI
ρin = ρsys ⊗ ρbeam

# apply first beam splitter
ρ1 = bs * ρin * dagger(bs)

# calculate the time evolution
tout, ρt = time evolution.master_dynamic(

tspan, ρ1,
(t,ρ) -> H_mzi(

t,ρ,ρsys,H_sys,0,f1,f2,Isys,
);
maxiters=maxi, reltol=err, abstol=err

)

# apply phase shift and second beam splitter to each state
ρ2 = map(rho -> (ps * rho * dagger(ps)), ρt)
ρ3 = map(rho -> (bs * rho * dagger(bs)), ρ2)

# extract firing probabilities
p0 = map(rho -> (expect(projector(f1), ptrace(rho,1))), ρ3)
p1 = map(rho -> (expect(projector(f2), ptrace(rho,1))), ρ3)

# sanity checks
if maximum(abs.(imag.(p0))) > 10ˆ(-5) || maximum(abs.(imag.(p1))) > 10ˆ(-5)

throw(error("firing probabilities are imaginary"))
end

# return everything
return real.(p0), real.(p1), tout, ρ2

end

the function Hmzi used in the above function is given below.

function H_mzi(t,ρ,ρsys,H_sys,a,f1,f2,Isys)
# get system Hamiltonian and jump operators
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Hsys, Jsys, Jsysdag = H_sys(t,0*ρsys)

# embed Hsys into MZI Hilbert space
H = Hsys ⊗ projector(f2) + Isys ⊗ ((-a)*projector(f1))

# embed all jump operators
J = repeat([0*(1+im)*H], length(Jsys))
for k in 1:length(Jsys)

J[k] = Jsys[k] ⊗ projector(f2)
end
Jdagger = dagger.(J)

return H, J, Jdagger
end
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Appendix C

Numerical Procedures

C.1 Differentiation
The numerical differentiation to obtain the time derivative of the eigenvectors
is done using a fourth order difference quotient from [9]. For n equidistant steps
of stepsize h on the intervall [t1, tn] the procedure is given as follows:

f ′1 =
−25f1 + 48f2 − 36f3 + 16f4 − 3f5

12h
,

f ′2 =
−3f1 − 10f2 + 18f3 − 6f4 + f5

12h
,

f ′i =
fi−1 − 8fi−1 + 8fi+1 − fi+2

12h
for 2 < i < n− 2,

f ′n−1 =
−fn−4 + 6fn−3 − 18fn−2 + 10fn−1 + 3fn

12h
,

f ′n =
3fn−4 − 16fn−3 + 36fn−2 − 48fn−1 + 25fn

12h
. (C.1)

This difference quotient is implemented in the following function:

function DQ4(vecs,h)

# determining the size of the input
n,m = size(vecs)
# predefining dvecs
dvecs = Complex.(zeros(n,m))

# implementing the fourth order difference quotient
dvecs[1,:] = (-25*vecs[1,:]+48*vecs[2,:]-36*vecs[3,:]
+16*vecs[4,:]-3*vecs[5,:])
dvecs[2,:] = (-3*vecs[1,:]-10*vecs[2,:]+18*vecs[3,:]
-6*vecs[4,:]+vecs[5,:])
for i in 3:n-2

dvecs[i,:] = (vecs[i-2,:]-8*vecs[i-1,:]+8*vecs[i+1,:]-vecs[i+2,:])
end
dvecs[end-1,:] = (-vecs[end-4,:]+6*vecs[end-3,:]-18*vecs[end-2,:]
+10*vecs[end-1,:]+3*vecs[end,:])
dvecs[end,:] = (3*vecs[end-4,:]-16*vecs[end-3,:]+36*vecs[end-2,:]
-48*vecs[end-1,:]+25*vecs[end,:])
dvecs = dvecs./(12*h)
return dvecs

end
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C.2 Integration
The integrals of the overlap of the eigenstates with their time-derivative are
computed using the extended Simpson rule from [10]. For n equidistant steps
of size h on the intervall [t1, tn] the quadrature is given as follows:

ˆ tn

t1

f(x) dx ≈ h
(

3

8
f1 +

7

6
f2 +

23

24
f2 + f3 + f4 + · · ·

+ fn−3 +
23

24
fn−2 +

7

6
fn−1 +

3

8
fn

)
.

This quadrature is implemented in the function given below:

function ExtSimpsQuad(f,tsteps)

# extracting stepsize
dt = tsteps[2]-tsteps[1]

# check whether the number steps is even
if length(tsteps)%2 != 0

throw(error("n has to be even for the Simpson rule to be used"))
end

# computing integral
int = (3/8*f[1]+7/6*f[2]+23/24*f[3])
for i in 4:length(tsteps)-3

int += f[i]
end
int = int + (23/24*f[end-2]+7/6*f[end-1]+3/8*f[end])

return dt*int
end

C.3 Diagonalization
The diagonalization of the density matrices ρ̂k given by the solver for the
timestep tk was implemeted by the following function. We adopted the con-
vention that the first entry of each eigenstate was set to be real.

function eigensystem(matlist)

# determine the size of the matrices
d,d2 = size(matlist[1].data)
if d2 != d

throw(error("matrices must be square matrices"))
end

# determine how many matrices we have
n = length(matlist)

# initializing arrays
vallist = Complex.(zeros(n,d))
vecarray = Complex.(zeros(n,d,d))

# computing
for i in 1:n

store = eigen(Array(matlist[i].data))
vallist[i,:] = store.values
for j in 1:d
vecarray[i,j,:] = exp(-im*angle(store.vectors[1,j]))*store.vectors[:,j]
end
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end

return vallist, vecarray
end

C.4 Semi-analytical Formula
The semi-analytical implementation of Eq. (1.41) utilizing the difference quo-
tient from Appendix C.1 and the quadrature from Appendix C.2 as well as the
diagonalization procedure in Appendix C.3 is given here.

function geometric_phase_formula(ρ_sys,H_sys,p_master_dynamic)

# extracting base and sizes
bsys = basis(ρ_sys)
d, ~ = size(ρ_sys.data)

# unwrapping parameters for the solver
maxi, err, tspan = p_master_dynamic
n = length(tspan)

# time evolution
tout, ρt = time evolution.master_dynamic(

tspan, ρ_sys, H_sys; maxiters=maxi,reltol=err,abstol=err
)

# diagonalizing time evolution
vallist, vecarray = eigensystem(ρt)

# derivatives
dvecarray = Complex.(zeros(n,d,d))
h = tout[2]-tout[1]
for j in 1:d

dvecarray[:,j,:] = DQ4(vecarray[:,j,:],h)
end

# integrals
farray = Complex.(zeros(n,d))
intlist = Complex.(zeros(d))
for i in 1:n

for j in 1:d
farray[i,j] = vecarray[i,j,:]'*dvecarray[i,j,:]

end
end
for j in 1:d

intlist[j] = ExtSimpsQuad(farray[:,j],tout)
end
# plugging everything into the formula (11)
z = Complex(0)
zp = Complex(0)
for i in 1:d

z += (
sqrt(real(vallist[1,i]*vallist[end,i]))*vecarray[1,i,:]'
*vecarray[end,i,:]*exp(-im*imag(intlist[i]))
)

zp += (
sqrt(real(vallist[1,i]*vallist[end,i]))*vecarray[1,i,:]'
*vecarray[end,i,:]
)

end
γ = angle(z)
vis = abs(z)
α = angle(zp)
vis_tong = abs(zp)

return γ, vis, α, vis_tong, tout, ρt
end
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