
Project: Estimating transition rates from
stochastic trajectories of a two-level system

Flavio Samu Kindler
Supervisor: Prof. Dr. Patrick Potts

May 7, 2025

Abstract
In fluorescence experiments, the transition rates between different states of a
molecule can be estimated by observing transitions in real time. This project
theoretically investigates the estimation of transition rates from real-time tra-
jectories of a two-level system.
The maximum likelihood estimator was derived and real-time trajectories were
simulated in Julia using the Gillespie algorithm. The error of the derived like-
lihood estimator was quantified regarding the measurement time and different
rate combinations.
The results can serve as a basis for investigating the possibility of estimating
time-dependent transition rates.

1

1 Introduction
In fluorescence experiments, the transition rates between different states of a
molecule can be estimated by observing transitions in real time. This project
investigates the accuracy of estimated transition rates of a basic two-level sys-
tem.
There are many two-level systems in physics, such as a spin- 12 particle used
e.g. in quantum computing using semi-conductors, the description of interfer-
ing quantum states and the ground and first excited state of an atom.
Fluorescence resonance energy transfer (FRET) is applied to probe biomolecular
conformational changes or interactions. By measuring the change in fluorescence
of donor and acceptor (called FRET-pair) of an energy transfer, one can use
such a FRET-pair as a spectroscopic ruler.[1]
Accurately estimating the state change rates in such systems can be useful. This
project serves as a basis to simulate and estimate more complex systems.

2 Two-level system
We are considering a two-level system with ground state 0 and excited state 1.
The change of the system will be described by the two rates Γ10 and Γ01. With
Γ10 denoting the rate of the transition 0 → 1 and Γ01 denoting 1 → 0.

Figure 1: Sketch of a two-level systems with levels 0 and 1 and transition rates
Γ10 and Γ01.

Such a two-level system is described by the following rate equation

∂

(
p0(t)
p1(t)

)
=

(
−Γ10 Γ01

Γ10 −Γ01

)(
p0(t)
p1(t)

)
, (1)

with p0(t) describing the probability, that the system is in state 0 at time t and
p1(t) describing the probability, that the system is in state 1 at time t.
Using p0(t) = 1 − p1(t) one can solve Eq.(1). The probability that the system
is in state 1 is given by

p1(t) = e−(Γ10+Γ01)t

[
p1(0)−

Γ10

Γ10 + Γ01

]
+

Γ10

Γ10 + Γ01
. (2)

When observing a two-level-system over a time τ , the measured changes over
time can be described as a trajectory

ντ = {n(t) | t ∈ [0, τ]}. (3)

2

The trajectory describes the current state n(t) at any time t. Illustrations of
trajectories plotted as a function of time are shown in Fig.2.

Figure 2: Two trajectories of the state evolution. The chosen transition rates
here are Γ10 = Γ01.

As illustrated in Fig.2, the system jumps between states 0 and 1 at random
times. N is the number of total jumps and ni ∈ {0, 1} denotes the i-th state
and n0 therefore describing the starting state. The time intervals between jumps
are called θi. These are distributed exponentially by the following waiting time
distribution (WTD):

Wni
(θi) = Γni

e−θiΓni , (4)

with Γ1 = Γ10 and Γ0 = Γ01 denoting the i-th jump into the i-th state ni. The
probability to get a trajectory ντ over a fixed time τ is

p(ντ) = pn0
· e

−ΓnN

(
τ−

N∑
i=1

θj

)
·

 N∏
j=1

Wnj
(θj)

 . (5)

Eq.(5) describes the probability of a trajectory ντ by multiplying the probability
of the start state pn0 by the distribution of each time interval between jumps
(second term) then multiplying with the probability, that no jump happens for
the remaining time for the last state nN (third term).
If we choose k as the number of jumps up, l as the number of jumps down,
and τ1 as the total time the system is in state 1, we can rewrite Eq.(5) into
a simpler form as a probability density to observe a specific trajectory ντ that
derives directly from Eq.(5)

p(ντ |Γ10,Γ01) = pn0Γ
k
10Γ

l
01e

−Γ10(τ−τ1)−Γ01τ1 (6)

Again, start with the steady state pn0
, but this time multiply with the cor-

responding rates as many times as there are jumps: Multiply by Γk
10 and the

exponential density for the total time τ0 = τ − τ1 for when the state is 0:
e−Γ10(τ−τ1).
Analogously multiply by Γl

01 and the exponential density for the total time τ1
for when the state is 1: e−Γ01τ1 . [2]

3

3 Estimation of Rates
With the maximum likelihood function, we can determine the estimators Γ̂10

and Γ̂01 for the transition rates:(
Γ̂10, Γ̂01

)
= arg max

Γ10,Γ01

logP (ν|Γ10,Γ01) (7)

To maximize this, we need to solve

−→
∇Γ logP (ν|Γ10,Γ01)

∣∣∣∣∣Γ10=Γ̂10

Γ01=Γ̂01

= 0 (8)

Plugging the probability of Eq.(6) into Eq.(8) and considering a set starting
state of n0 = 0 or 1 we get the following estimators

Γ̂10 =
k

τ − τ1

Γ̂01 =
l

τ1

(9)

4 Simulation
The simulation was performed in the Julia programming language.

To sample the time intervals between jumps, the Gillespie Algorithm was used
to get the exponential distribution of θi described by Eq.(4). The process is
explained in chapter 3.1.

The trajectory ντ is realized as two saved arrays chronologically listing the
state ni (0 or 1) in the first array and the time passed θi in that state in the
second array.

The simulation will be run several times for a fixed total time τ . For each
simulation, the number of jumps k, l and the time in state one τ1 will be read
out. With this, the estimators Γ̂10 and Γ̂01 are calculated with Eq.(9) for each
simulated trajectory. These calculated estimators are then visualized in a Γ̂10-
Γ̂01-scatterplot.

The covariance matrix of the two estimators is calculated and converted to
confidence ellipses for 50% and 95%. These are also drawn over the scatter-plot
to visualize the accuracy and correlation of the two estimators Γ̂10 and Γ̂01. The
calculation and plotting is explained in chapter 3.2.

4

4.1 Gillespie Algorithm
At the start, a given total time τ and the rates Γ01 and Γ10 are determined for
the simulation.
Then the initial state is sampled at an equal chance to be 0 or 1.

To sample the different time intervals θi we first sample ri ∈ U [0, 1) from a
uniform distribution integrated in Julia. The generated ri are saved in an array
and converted to the exponential distribution required given in eq.(4) as follows:

θi = − 1

Γni

ln(ri) (10)

with Γ1 = Γ10 and Γ0 = Γ01 denoting the i-th jump into the i-th state ni.
The distribution of sampled θi has been plotted as a histogram in Julia to vi-
sualize and verify it is exponentially distributed as expected.

Figure 3: Normalized histogram of the sampled waiting times θi for the rates
Γ10 = Γ01 in comparison with the corresponding waiting time exponential distri-
bution W (θ) = Γ01e

−θ·Γ01 . Here simulated for Γ10 = Γ01 and time τ ·Γ01 = 1000.

Before the sampling of every θi, it is checked if the total time τ is already
exceeded. The sampling stops as soon as

∑i
j=1 θj > τ . The last θi is then

adjusted, such that in the end
∑i

j=1 θj = τ . [3]

5

4.2 Confidence Ellipse
To visualize the confidence ellipses for the estimators Γ̂10 and Γ̂01 the covariance
matrix was used. For two variables x and y and N observations, the entries of
the covariance matrix are calculated as follows

C =
1

N − 1

N∑
i=1

(
(xi−x)2 (xi−x)(yi−y)

(yi−y)(xi−x) (yi−y)2

)
. (11)

This covariance matrix is always real and symmetric. This implies that it has
real eigenvalues λ1,2 to two orthogonal eigenvectors v1,2. These are calculated
with the implemented LinearAlgebra package in Julia.
The center point of the ellipse is the point defined by the mean of both variables.
The eigenvectors act as the two symmetric axes of the confidence ellipse. To
draw it, the angle between the x-axis and v1 is calculated.
The eigenvalues are converted to the two axes of the ellipse with

√
c · λ1 being

the radius of the major axis and
√
c · λ2 the radius of the minor axis.

The factor c depends on the desired confidence and is determined using the χ2

distribution implemented in Julia to read out the value for the corresponding
quantile.
This is done by assuming the estimators to be normally distributed in both
directions. The χ2 distribution with two degrees of freedom is the distribution
of the sum of the squares of two normal distributed variables. Therefore reading
out the value of the χ2 for two dimensions at the points 0.95 (go to Appendix
A1 in line 141 to see how), gives the factor for our two confidence intervals
together creating the 95% confidence ellipse.
The confidence ellipse can then be drawn with the following points:(

x(t)
y(t)

)
= (v1 v2) ·

(√
c·λ1·cos(t)√
c·λ2·sin(t)

)
(12)

The index of dispersion

Dj =
λj

µj
(13)

has also been calculated for each simulation where λj represents one of the
two eigenvalues of the covariance matrix and µj the mean of the corresponding
estimator Γ̂j with j ∈ {10, 01}.

6

5 Results
Some examples of the simulation for different rates Γ10 and Γ01 and total time
τ are shown below.

Figure 4: Scatter plot of 100 simulations for rates Γ01 = Γ10 and total time
τ ·Γ01 = 100 with confidence ellipses of 50% and 95%. The indices of dispersion
are D10 = 2.4 · 10−2 and D01 = 2.1 · 10−2.

One can see in Fig.4, that the calculated estimators Γ̂10 and Γ̂01 are not accurate
for small total times τ . Therefore the simulations are done for bigger τ ·Γ01 = 200
and 500 for three different combination of rates Γ10 and Γ01.

Figure 5: Scatter plot of 100 simulations for rates Γ01 = Γ10 and total time
τ · Γ01 = 200 (left) and 500 (right) with confidence ellipses of 50% and 95%.
The indices of dispersion are D10 = 1.2·10−2 and D01 = 0.9·10−2 for τ ·Γ01 = 200
and D10 = 4.2 · 10−3 and D01 = 4.8 · 10−3 for τ · Γ01 = 500.

7

Figure 6: Scatter plot of 100 simulations for rates Γ01 = 1
2Γ10 and total time

τ ·Γ01 = 200 (left) and 500 (right) with confidence ellipses of 50% and 95%. The
indices of dispersion are D10 = 1.6 · 10−2 and D01 = 1.0 · 10−2 for τ · Γ01 = 200
and D10 = 7.3 · 10−3 and D01 = 2.8 · 10−3 for τ · Γ01 = 500.

Figure 7: Scatter plot of 100 simulations for rates Γ01 = 1
3Γ10 and total time

τ ·Γ01 = 200 (left) and 500 (right) with confidence ellipses of 50% and 95%. The
indices of dispersion are D10 = 3.0 · 10−2 and D01 = 0.6 · 10−2 for τ · Γ01 = 200
and D10 = 9.2 · 10−3 and D01 = 2.4 · 10−3 for τ · Γ01 = 500.

8

We can see in Fig.5 that the estimation gets a lot better for longer total times
τ . Also there is no significant covariance and the accuracy of the estimators is
similar for both Γ10 and Γ01.

Looking at Fig.6 a drastic difference is seen as the confidence ellipse is way
broader in Γ10-direction (the bigger rate). Considering that in this simulation,
the system takes up more time in state 1 than 0, this is expected. One can also
observe a slight shift up in Γ10-direction, meaning the estimator Γ̂10 will slightly
overshoot the real rate Γ10 on average.

This is also more prevalent in Fig.7, where Γ10 is three times larger than Γ01.
Here the drift upwards in Γ10-direction is clearly visible, even for long simula-
tions with τ · Γ01 = 500 (corresponding to approximately 250 jumps).

6 Conclusions and Outlook
Basic two-level systems with similar rates can be estimated with measurements
over a rather short time with a relative uncertainty of around D = 1 · 10−2 for
both estimators.
When looking at two-level systems with very different rates (such as Γ01 = 1

3Γ10)
there is almost unchanged uncertainty observed in the estimator for the larger
rate, still around D = 1 · 10−2. The smaller rate can be estimated more accu-
rately around D = 5 · 10−3. This is very likely due to the fact, that the system
will spend more time e.g. in the excited state 1 when the smaller rate is Γ01

(the rate corresponding to the state change 1 → 0).
The overall estimation gets more precise when longer measurements of the sys-
tem can be taken.
Future steps could include looking at time-dependent rates, expanding the sys-
tem to three levels or including a coupling of two systems.
One could also look at fluorescence interactions, where the amount of energy
transferred changes over time, resulting in distinct FRET states for different
energy values and their corresponding transition rates. [1]

9

Appendix

A1 Julia Code

1 using Random, Plots, Statistics, LinearAlgebra, Distributions
2

3 #simulation for one trajectory with estimator calculation
4 function sim(cutofftime, gammafactor)
5 r = AbstractFloat[] #uniform dist to sample theta
6 theta = AbstractFloat[] #individual waiting times
7 t = AbstractFloat[] #individual total time (sum theta)
8 step = 1
9 tau = 0 #total time

10 tau_1 = 0 #total time in state 1
11

12 #helpvariables to plot state evolution
13 plotstate = AbstractFloat[]
14 plottime = AbstractFloat[]
15 epsilon = 0.001
16

17 #Predetermined Variables
18 tau_tot = cutofftime #cutoff time
19 Gamma_10 = 1 #rate to jump 0->1
20 Gamma_01 = gammafactor * Gamma_10 #rate to jump 1->0
21

22 #Start State
23 startprob = 0.5 #prob that start state is 1 (0.5=50%)
24 startrand = rand() #rand num to sample start state
25

26 if startprob >= startrand
27 state = 0
28 k = 0 #number of times 0->1
29 l = -1 #number of times 1->0
30

31 elseif startprob < startrand
32 state = 1
33 k = -1
34 l = 0
35 end
36

37 push!(plotstate, state)
38 push!(plottime, 0)
39

40 while tau < tau_tot
41 #sample uniform dist number in [0,1)
42 push!(r, rand())
43 #sample theta based on current state
44 if state == 0
45 #convert to exp dist number -> WTD

10

46 push!(theta, -1/Gamma_10*log(r[step]))
47 l = l + 1
48 elseif state == 1
49 push!(theta, -1/Gamma_01*log(r[step]))
50 tau_1 = tau_1 + theta[step]
51 k = k + 1
52 end
53 #total time
54 if tau + theta[step] < tau_tot
55 tau = tau + theta[step]
56 #save total time
57 push!(t, tau)
58

59 #adjust arrays for state evolution plot
60 push!(plottime, tau)
61 push!(plottime, tau + epsilon)
62 push!(plotstate, state)
63

64 #increase step
65 step = step + 1
66

67 #change state
68 state = mod(state + 1, 2)
69

70 #adjust arrays for state evolution plot
71 push!(plotstate, state)
72

73 elseif tau + theta[step] >= tau_tot
74 #adjust last theta to end when total time ends
75 theta_temp = theta[step]
76 if state == 1
77 tau_1 = tau_1 - theta[step] + theta_temp
78 end
79 #save final theta
80 theta[step] = tau_tot - tau
81 #save total time
82 tau = tau_tot
83

84 #adjust arrays for state evolution plot
85 push!(t, tau)
86 push!(plottime, tau)
87 push!(plotstate, state)
88 end
89 end
90

91 #Calculate estimators
92 Gamma_10_est = k/(tau-tau_1)
93 Gamma_01_est = l/tau_1
94

95 #output estimators

11

96 return (Gamma_01_est, Gamma_10_est)
97

98 #output for when sim is only run once to see state evolution plot
99 println("number of jumps: ", length(t)-1)

100 println("jumps up/down: (k, l)= (", k, ", ", l, ")")
101 println("time in state 1: tau_1=", tau_1)
102 println("Estimators:")
103 println("Gamma_10 = ", Gamma_10_est)
104 println("Gamma_01 = ", Gamma_01_est)
105 plot(plottime, plotstate)
106 ylims!(-0.3, 1.3)
107 xlims!(0,tau_tot)
108 title!("State Evolution")
109 xlabel!("time")
110 ylabel!("state")
111 end
112

113 #simulation of multiple trajectories with scatter plot
114 function multisim(cutofftime, gammafactor, num_of_sims)
115 Gamma_01_estimators = AbstractFloat[]
116 Gamma_10_estimators = AbstractFloat[]
117

118 for j = 1:num_of_sims
119 (Gamma_01_est, Gamma_10_est) = sim(cutofftime, gammafactor)
120 push!(Gamma_01_estimators, Gamma_01_est)
121 push!(Gamma_10_estimators, Gamma_10_est)
122 end
123 #println(Gamma_01_estimators)
124 #println(Gamma_10_estimators)
125

126 mean01 = mean(Gamma_01_estimators)
127 mean10 = mean(Gamma_10_estimators)
128

129 # Calculate Covarince-Matrix
130 C = cov_mat(Gamma_01_estimators, Gamma_10_estimators)
131

132 # Calculate Eigenvalues and Eigenvectors for estimation ellipse
133 (lambda_1, lambda_2) = eigvals(C);
134 v_1 = sqrt(lambda_1)*eigvecs(C)[:,1];
135 v_2 = sqrt(lambda_2)*eigvecs(C)[:,2];
136

137 # Calculate Angle for estimation ellipse
138 angle = acos(dot([1,0],v_1)/norm(v_1));
139

140 #getting confidence factors from Chi-Squared distribution
141 c_95 = quantile(Chisq(2), 0.95)
142 c_50 = quantile(Chisq(2), 0.50)
143

144 #println(dot(v_1,v_2)) #check that eigenvectors are normal to each
other

12

145 println(mean01," / ", mean10)
146 println("Cov-Matrix: ", C)
147 #plot(quiver([mean01,mean10], [mean01,mean10], quiver=(v_1, v_2)))
148 scatter(Gamma_01_estimators, Gamma_10_estimators, mc=:lightblue,

label="Estimators", size=(500,500), dpi=1000)
149 scatter!([gammafactor], [1.0], mc=:blue, label="Real Rates")
150 plot!(getellipsepoints(mean01, mean10, sqrt(c_95*lambda_1),

sqrt(c_95*lambda_2), angle), linewidth=1.5, linecolor=:green,
label="95% Confidence Ellipse")

151 plot!(getellipsepoints(mean01, mean10, sqrt(c_50*lambda_1),
sqrt(c_50*lambda_2), angle), linewidth=1.5, linecolor=:red,
label="50% Confidence Ellipse")

152 ylims!(0.5, 1.5)
153 xlims!(0, 1)
154 title!("Estimators Scatter Plot")
155 xlabel!("Gamma_01")
156 ylabel!("Gamma_10")
157

158 savefig("scatter_500_13.png")
159 end
160

161 #covariance matrix calculations
162 function cov_mat_entry(a,b)
163 N = length(a);
164 sum = 0;
165 for i = 1:N
166 sum = sum + (a[i]-mean(a))*(b[i]-mean(b));
167 end
168 sum = 1/(N-1)*sum;
169 return sum
170 end
171 function cov_mat(x,y)
172 cov_11 = cov_mat_entry(x,x);
173 cov_12 = cov_mat_entry(x,y);
174 cov_21 = cov_mat_entry(y,x);
175 cov_22 = cov_mat_entry(y,y);
176 return [[cov_11 cov_12]; [cov_21 cov_22]]
177 end
178

179 #tilted ellipse points calculation
180 # cx: x-position of the center
181 # cy: y-position of the center
182 # rx: major radius
183 # ry: minor radius
184 # ang: angle to x-axis
185 function getellipsepoints(cx, cy, rx, ry, ang)
186 t = range(0, 2*pi, length=100)
187 ellipse_x_r = @. rx * cos(t)
188 ellipse_y_r = @. ry * sin(t)
189 R = [cos(ang) sin(ang); -sin(ang) cos(ang)]

13

190 r_ellipse = [ellipse_x_r ellipse_y_r] * R
191 x = @. cx + r_ellipse[:,1]
192 y = @. cy + r_ellipse[:,2]
193 (x,y)
194 end
195

196

197 #run simulation with given parameters
198 multisim(500, 1/3, 100)
199 #inputs:
200 #cutofftime, gammafactor, number_of_sims

References
[1] Taekjip Ha et al. 2024 Fluorescence resonance energy transfer at the single-

molecule level Nat Rev Methods Primers 4, 21
https://doi.org/10.1038/s43586-024-00298-3

[2] Julia Boeyens et al. 2023 Probe thermometry with continuous measure-
ments New J. Phys. 25 123009

[3] Dr. Luca Donati "Stochastic and Diffusive Processes" Lecture 4b: method
of generating functions and Gillespie algorithm WISE2324 Berlin

[4] function "getellipsepoints" for calculating ellipse points
from user @filchristou 2022 on Julia Forum
https://discourse.julialang.org/t/plot-ellipse-in-makie/82814
(accessed 13.04.2025)

14

https://doi.org/10.1038/s43586-024-00298-3
https://iopscience.iop.org/article/10.1088/1367-2630/ad0e8a
https://discourse.julialang.org/t/plot-ellipse-in-makie/82814

	Introduction
	Two-level system
	Estimation of Rates
	Simulation
	Gillespie Algorithm
	Confidence Ellipse

	Results
	Conclusions and Outlook

