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Introduction

Oscillations are abundant in our universe and their description forms a crucial
part of our understanding of this worlds working mechanisms. From sound-
waves to the tide, from the beating of a human heart to the undulatory
description of the microscopic world, oscillation is an omnipresent pattern
on many scales.
One subclass of the many oscillators that exist are self-sustained oscillators.
They form a particularly interesting case where the oscillations are driven
by an internal energy supply of the system that exhibits them. Among them
are for example the flashing of fireflies, the beating of a heart, the motion
of a metronome or the oscillations of a pendulum clock. Regardless of their
initial state or a nonrecurring external perturbation, these oscillations always
return to the same rhythm and continue to oscillate. The defining features
of these systems are the stability in regard to their amplitude and the con-
trollability of their phase. This means perturbations to the amplitude decay
quickly and perturbations to the phase do not decay at all. Mathematically
what all these systems have in common is the feature of a stable and attrac-
tive limit cycle in their phase space, an asymptotically stable amplitude and
a neutrally stable phase.
It was in 1655 that Christiaan Huygens first observed an intriguing feature of
self-sustained oscillators. Suspending two pendulum clocks from a wooden
beam, he observed that after some time the two clocks adjusted their fre-
quencies to oscillate in unison and thereby made one of the first observations
of the phenomenon refered to as synchronization. This phenomenon, that
self-sustained oscillators if affected continuosly by an external periodic force
can adjust their own rhythm, has now been intensively studied, has had many
applications in diverse fields and will also be the topic of discussion in this
report.
While numerous books and articles exist on the synchronization properties of
systems exhibiting self-sustained oscillations with a single-frequency signal,
the question of how a self-sustained oscillator responds to a multi-frequency
signal has received little attention.
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In this report we investigate the synchronization properties of the van der
Pol oscillator, a paradigmatic self-sustained oscillator, when subjected to two
periodic signals of different frequency. Derived in 1920 in the context of his
work at Philips by Balthazar van der Pol the van der Pol equation has been
used to model many oscillatory processes in diverse fields of the natural sci-
ences and has established itself as an exemplary self-sustained oscillator.
Starting from the theory and analytical methods developed to analyze syn-
chronization of self-sustained oscillators to a single periodic signal, we will
try to extend these methods to the case of two signals and use numerical
simulations to advance into selected areas of the parameter space.
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Chapter 1

Theoretical Background

In this chapter we briefly consider the limit cycle of the van der Pol oscillator,
describe the theoretical approach to synchronization to a single-frequency
signal and detail the knowledge on synchronization to a two-frequency signal.
Lastly we will touch on numerical methods used in our investigation.

1.1 Limit cycle of the van der Pol oscillator

The van der Pol oscillator is described by the following equation of motion:

ü+ ω2
0u− 2εu̇

(
1− βu2

)
= 0 . (1.1)

Here u(t) is the position, ω0 is the natural frequency and β,ε are two param-
eters. The equation consists of the first two terms making up a harmonic
oscillator and a third term which, dependent on the amplitude, describes pos-
itive or negative damping. This feature of an amplitude-dependent damping
makes the homogeneous van der Pol equation a classical example of a limit-
cycle oscillator. Given any nonzero random initial condition, after a time of
transient dynamics the oscillator will end up on the same circular trajectory
in phase space called a limit cycle. This behaviour is illustrated in Fig. 1.1.
Along this limit cycle the trajectory is neutrally stable, meaning perturba-
tions do not decay, whereas transversal to the limit cycle the trajectory is
asymptotically stable, meaning perturbations decay and the trajectory re-
turns to the limit cycle. [1]
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Figure 1.1: Trajectories of a van der Pol oscillator in phase space for different
initial conditions (black dots) all result in the same limit cycle. Parameters: ε =
0.5, β = 0.4 and ω0 = 1.
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1.2 Van der Pol oscillator with single-frequency

signal

To understand the methods to deal with synchronization and to get an idea
of the possible dynamics, we now consider the van der Pol oscillator driven
by a single-frequency signal

ü+ ω2
0u− 2εu̇

(
1− βu2

)
= K cos(ωt) . (1.2)

In the following we review the general procedure to deal with a self-sustained
oscillators subjected to a periodic signal detailed in [1] and apply it to our
differential equation.
In this case we expect synchronization to the external signal and are therefore
interested in solutions oscillating at the frequency of the external drive signal
ω. We make the ansatz,

u(t) =
1

2
A(t)eiωt + c.c. . (1.3)

Here we take the complex amplitude A as a slowly varying correction to the
amplitude and frequency of the signal and therefore introduce the relation:

u̇(t) =
1

2
A(t)iωeiωt + c.c. . (1.4)

We use a two-timing approach. For a more detailed derivation of this see [2].
Plugging Eqs. (1.3) and (1.4) into Eq. (1.2), we get a differential equation
for the complex amplitude A,

Ȧ =
e−iωt

iω

[
(ω2 − ω2

0)u+ 2εu̇(1− βu2) +K cos(ωt)
]
. (1.5)

We now restrict ourselves to large and slow variations of the amplitude and
therefore neglect all rapidly oscillating terms on the right hand side (r.h.s)
of Eq. (1.5). This procedure is called averaging and leads us to an approxi-
mation for the complex amplitude equation,

Ȧ = −iω
2 − ω2

0

2ω
A+ εA− εβ

4
|A|2A− iK

2ω
+O(ε2) . (1.6)

We now make the following substitutions

A =
2√
β
a, t =

τ

ε
, ν =

ω2 − ω2
0

2ωε
, e =

K
√
β

4ωε
,
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Figure 1.2: Bifurcation diagram for the isochronous forced weakly nonlinear
oscillator from [3].

where a is the amplitude normalized to the natural amplitude, τ the dimen-
sionless time, ν the dimensionless detuning and e the dimensionless drive
strength. This yields our final differential equation for the normalized com-
plex amplitude

ȧ = −iνa+ a− |a|2a− ie . (1.7)

We now consider the fixed points and limit cycles of this differential equa-
tion to get an understanding of the resulting motion for different values of
the drive strenght and the detuning. As Eq. (1.7) is generally valid for
isochronous weakly forced nonlinear oscillators, we adopt the classification
from [1] as it stands.
Depending on the detuning ν and the normalized drive strenght e one can
indentify four major regions in the bifurcation diagram of (1.7), shown in
Fig. 1.2:

Region A For small drive strength and small detuning, two fixed points
exist of which one is stable and one is unstable. After a transient time,
A takes a fixed value and the oscillator therefore synchronizes to the
frequency of the external drive with a constant phase shift. Example
trajectories can be seen in Fig. 1.3a.

Region B For small detuning and moderate drive strength, only one stable
fixed point exists. The oscillator still synchronizes to the frequency of
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the external drive with a constant phase shift. Example trajectories
can be seen in Fig. 1.3b.

Region D For moderate drive strength and detuning, a stable limit cycle
exists which does not envelop the origin. Thus, A is no longer constant
but has a fixed and finite average phase and the oscillation therefore
synchronizes to the frequency of the external drive as the additional
rotation in the rotating frame is zero on average. Example trajectories
can be seen in Fig. 1.3d.

Region C For large detuning, a stable limit cycle exists which envelops
the origin. The frequency of the oscillation is ω plus the rotation of
A and the resulting motion is quasiperiodic and asynchronous to the
frequency of the external drive signal. Example trajectories can be seen
in Fig. 1.3c.

The box around the meeting point of all regions in Fig. 1.3 contains complex
bifurcations which we will not explain here. For a mored detailed discussion
see [4].
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Figure 1.3: Trajectories of the amplitude a in the complex plane for the different
regions of the bifurcation diagram in Fig. 1.2.
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1.3 The circle map and response to a two-

frequency signal

To describe the synchronization behaviour of a self-sustained oscillator sub-
ject to a two-frequency drive signal we need to introduce the concept of the
circle map. In this explanation we will again closely follow the treatment of
the theory in [1].
Because we know the dynamics of a self-sustained oscillator in the homo-
geneous case, we can describe the dynamics of the system subjected to a
periodic forcing by continuity arguments. As the homogeneous case leads to
a limit cycle in phase space, the dynamics in its vicinity evolve inside a ring
around that limit cycle. For a small amplitude of the external drive signal,
these dynamics have an attractive and invariant curve which is described by
the circle map [1]. In this case of a weak signal, the dynamics of the ampli-
tude can be neglected as it is asymptotically stable and we can investigate
the main properties of the system close to the limit cycle by focusing on the
phase equation

φ̇ = ω0 +K ·Q(φ, t) , (1.8)

where ω0 is again the natural frequency of the system, K is the amplitude
of the external signal, and φ is the phase of the resulting motion in phase
space. The function Q(φ, t) is 2π-periodic in φ and T -periodic in t. Its exact
form depends on the structure of the signal and the oscillator in question.
In the case of a single-frequency signal, the phase space of this equation is
a 2D-torus that can be reduced to a one-dimensional mapping by taking a
stroboscopic view with time interval T . This maps φn(t) to φn+1(t + T ).
Choosing an arbitrary initial time t0 we construct a smooth invertible circle
map,

φn+1 ≡ φn + ω0T + εF (φn) mod 2π . (1.9)

The function F (φ) again depends on the structure of the signal and the
oscillator. This stroboscopic view on the trajectories in phase space allows
us to distinguish between synchronized or nonsynchronized motion resulting
from an external signal. For an invertible circle map, we characterize the
dynamics with the rotation number that gives the average phase shift per
one iteration,

ρ(φ0) = lim
n→∞

φn − φ0

2πn
. (1.10)

The rotation number ρ does not depend on the initial value φ0 nor on the
direction of the limit n → ∞ or n → −∞ [1]. Because the number of
iterations n can be rewritten as the elapsed time divided by the time-interval
of the stroboscopic mapping t

T
, we can derive that the rotation number is
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Figure 1.4: Rotation number ρ as a function of parameter η = ω0T for the sine
circle map from [1].

the ratio between the observed frequency Ω and the frequency of the drive
signal ω,

ρ = lim
t→∞

T · (φn − φ0)

2πt
=

Ω

ω
, (1.11)

with Ω being the average velocity of the phase,

Ω = lim
t→∞

φ(t)− φ0

t
. (1.12)

From this we can conclude that a rational rotation number corresponds to
synchronized motion (motion with the frequency of the drive signal or in
rational relation to this frequency) and an irrational rotation number to
nonsynchronous motion. Further analysis shows that synchronization does
occur for all rational combinations,

ρ =
p

q
,

where the width of the synchronization regions in the plane of detuning and
drive strength decreases with q [1]. For a fixed drive strength the rotation
number is a Cantor function or Devil’s Staircase, as illustrated in Fig. 1.4.
If the signal contains two frequencies, the phase equation takes the form

φ̇ = ω0 +K ·Q(φ, ω1t, ω2t) , (1.13)
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where ω1 and ω2 are the two frequencies contained in the signal. This equa-
tion now describes the motion on a three-dimensional torus. Again a circle
map can be derived and the rotation number exists. It can be shown that
in this case the phase of the system is locked if the observed frequency is a
rational combination of the two signal frequencies,

ρ =
p2
q2

ω2

ω1

+
p1
q1

(1.14)

otherwise, the system is not synchronized. [5, 1]

1.4 Noise and stochastic differential equations

Any realization of a self-sustained oscillator in the real world will be subject
to some sort of noise. Be it thermal noise, shot noise, or any other kind of
environmental noise, small stochastic perturbations will always be present
and it is of interest to know whether the results found in the noise-free case
persist in the presence of noise. To determine this we will add a Gaussian
white-noise term to our signal and numerically solve the differential equations
for several regions of the parameter space. Noise is a stochastic process and
leads to a stochastic differential equation which will have a stochastic process
as a solution. We will shortly introduce the basic theory and necessary
notation.
Starting from a general first order differential equation,

dx

dt
= a(x, t) , (1.15)

we obtain a stochastic differential equation by adding a time-dependent noise
term χ(t) with a prefactor b(x, t),

dx

dt
= a(x, t) + b(x, t)χ(t) . (1.16)

This can be rewritten by formal integration over infinitesimal dt,

x(t) = x(t0) +

∫ t

t0

dt′a[x(t′), t′] +

∫ t

t0

dW (t′)b[x(t′), t′], (1.17)

a short hand notation:

dx(t, ω) = a[x(t), t]dt+ b[x(t), t]dW (t) , (1.18)

see ref. [6].
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1.5 Numerical methods

The calculations done for this project were all carried out in the programming
language Julia. Here we want to quickly touch on our method of determining
the observed frequency ωobs and a crucial software package used during the
numerical investigation.

1.5.1 Solving the differential equations

To solve the differential equations we used the DifferentialEquations.jl pack-
age in Julia [7]. For detailed information on the package we refer the in-
terested reader to the cited paper. During our calculations we used the
Tsitouras 5 Runge-Kutta method for the ordinary differential equations and
the implicit Runge-Kutta discretization of the 1.0 Milstein method for the
stochastic differential equations, and a relative tolerance of 10−6.

1.5.2 Determining the observed frequency

To infer the observed frequency ωobs from the numerical solution of the differ-
ential equation, we proceed as follows: The phase of the numerical solution
is extracted by calculating the inverse tangent of the first derivative of the
amplitude and the amplitude. See Fig. 1.5 for an example. To perform an
adequate fit and get the frequency we unwrap the phase, thereby changing
the formerly 2π-periodic signal to an injective function. On this data we
then perform a linear fit whose slope yields the observed frequency ωobs.
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Figure 1.5: (a) Trajectory of the solution in phase space. (b) Position in real
space as a function of time. (c) Extracted phase φ as a 2π-periodic function. (d)
Unwrapped phase φ.
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Chapter 2

Analytical Results

In this chapter we will present the analytical approach we took to the problem
of a van der Pol oscillator subject to a two-frequency signal by applying a
two-timing approach.

2.1 Van der Pol oscillator with a two-frequency

signal

In this investigation we closely follow the procedures done in Ref. [8] for
similar problems. To investigate the case of a weak signal, we take the drive
to be proportional to ε,

ü+ ω2
0u− 2εu̇

(
1− βu2

)
= εE(t) , (2.1)

where now the drive consists of a signal with two frequencies,

E(t) = K1 cos (Ω1t+ θ1) +K2 cos (Ω2t+ θ2) . (2.2)

To get an approximate solution, we use a two-timing approach, for detailed
explanation see [2],

u(t; ε) = u0(T0, T1) + ε u1(T0, T1) +O(ε2) . (2.3)

We adapt the notation of [8] and define:

T0 = t T1 = ε t

D0 :=
∂

∂T0
D1 :=

∂

∂T1
.

15



By plugging the approach into Eq. (2.1) and comparing coefficients of ε, we
get two differential equations,

D2
0u0 + ω2

0u0 = 0 , (2.4)

D2
0u1 + ω2

0u1 = 2
(
D0u0 − βu20D0u0 −D1D0u0

)
+ E(T0) . (2.5)

Equation (2.4) can easily be solved by

u0 = A(T1)e
iω0T0 + c.c. (2.6)

Now we rewrite the drive frequencies as follows to show the detunings σ1, σ2
with respect to the natural frequency ω0,

Ω1 := ω0 + εσ1 Ω2 := ω0 + εσ2 .

Therefore the drive becomes:

E(T0) =
K1

2
ei(ω0T0+σ1T1+θ1) +

K2

2
ei(ω0T0+σ2T1+θ2) + c.c. . (2.7)

Equation (2.5) can be rewritten as:

D2
0u1 + ω2

0u1 =[
2iω0A− 2A′iω0 − 2βiω0A|A|2 +

K1

2
ei(σ1T1+θ1) +

K2

2
ei(σ2T1+θ2)

]
eiω0T0

− 2βA3e3iω0T0 + c.c. .

(2.8)

We make an ansatz for A(T1):

A(T1) = a(T1) · ei(σT1+c(T1)) := aei(σT1+c) ,

where the amplitude a(T1), the phase c(T1) and an additional constant σ are
all real variables. In order for the secular terms to vanish in Eq. (2.8) the
following condition has to hold:

2aiω0e
ic − 2βiω0a

′eic − 2iω0ae
ic(σ + c′)

− 2βiω0ae
ica2 +

K1

2
ei(σ1T1+θ1−σT1) +

K2

2
ei(σ2T1+θ2−σT1) = 0 .

(2.9)
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By splitting into real and imaginary part and rearranging we get two differ-
ential equations,

a(σ + c′) = −K1

4ω0

cos(σ1T1 + θ1 − σT1 − c)

− K2

4ω0

cos(σ2T1 + θ2 − σT1 − c)
(2.10)

a′ =
K1

4ω0

sin(σ1T1 + θ1 − σT1 − c)

+
K2

4ω0

sin(σ2T1 + θ2 − σT1 − c)− βa3 + a .

(2.11)

We define the following variable:

γi := σiT1 + θi − σT1 − c i = 1, 2 .

Rearranging again, we obtain

c′ = − K1

4ω0a
cos(γ1)−

K2

4ω0a
cos(γ2)− σ (2.12)

a′ =
K1

4ω0

sin(γ1) +
K2

4ω0

sin(γ2)− βa3 + a . (2.13)

These two differential equations now allow us to analyze the trajectories of
the complex amplitude in an adjustable rotating frame. By varying σ we can
choose different ratios between the two frequencies ω1 and ω2 and analyze
the synchronization behaviour numerically by solving Eq. (2.1).
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Figure 2.1: (a) Numerical solution for the parameters: K1 = K2 = 2.0, β =
0.4, ω0 = 1.0, σ1 = 0.54, σ2 = 0.75, θ1 = θ2 = 0, σ = 2σ1 − σ2 (b) numerical
solution for the same parameters except σ′ = σ + 0.01
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Chapter 3

Numerical Results

In this chapter we will present the findings of the numerical simulations of
the differential equation (2.1). We will discuss the observed frequency as a
function of the signal frequencies and subsequently interpret our findings.

3.1 Noiseless simulation

3.1.1 Synchronization to a single-frequency signal

The synchronization region for the single-frequency case was first computed
analytically using the theory discussed in Sec. 1.2. Synchronization is lost
during the bifurcation at the transition from region A to region C in Fig. 1.2.
With the parameters used in all numerical simulations here, the value for
the frequency ωborder at which this bifurcation occurs can be calculated and
amounts to ωborder = 1.0032± 0.0001. We checked this result numerically by
solving Eq. (1.2) for a range of signal frequencies, determining the observed
frequency and checking whether the detuning ω1 − ωobs exceeded a value
of 0.0001. The numerical result was: ω′border = 1.003183 on a frequency
resolution of 1.5 · 10−6. The graph of this simulation can be seen in Fig. 3.1.
In our further treatment we will use the analytically obtained value for the
synchronization region in the single-frequency case. From now on we will
refer to the region between the natural frequency ω0 = 1 and the border of
the synchronization region ωborder = 1.003200 as the synchronization region.
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Figure 3.1: Entrainment plot for the single-frequency case

3.1.2 Synchronization to a two-frequency signal

Unless specified differently, in the following we solve the equation of the van
der Pol oscillator subject to a two-frequency signal in the following form:

ü+ u− 2εu̇
(
1− βu2

)
= εE(t) , (3.1)

where we set for ε = 0.01, β = 0.4 and the drive with K1 = K2 = 2:

E(t) = K1 cos (ω1t) +K2 cos (ω2t+ θ) . (3.2)

The parameters were chosen such that we were able to investigate the fol-
lowing scenarios:

1. The frequencies of both signals are very close to each other. This should
be equivalent to a single-frequency signal with an increased amplitude.
This corresponds to the diagonal line in Fig. 3.2.

2. Both signal frequencies are in the synchronization region. This corre-
sponds to region (a) in Fig. 3.2.

3. One frequency is in the synchronization region, the other frequency is
outside the synchronization region. This corresponds to region (b) in
Fig. 3.2.
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4. Both signals are outside of the synchronization region. This corre-
sponds to region (c) in Fig. 3.2.

As we expect the solution to oscillate close to the frequency of the signal
for small signal strengths ε � 1, and because we want to ensure having a
reliable amount of data for extracting the observed frequency we adjusted
the number of timesteps in our simulations to the signal. The signal can be
rewritten as follows:

2 [cos (ω1t) + cos (ω2t+ θ)] = 4

[
cos

(
ω1 + ω2

2
t

)
cos

(
ω1 − ω2

2
t+ θ

)]
,

(3.3)
and has the period Tsum = π

|ω1−ω2| . If the difference |ω1 − ω2| decreases, the
number of timesteps tends to infinity. To prevent this divergence a data
point was not evaluated if the timesteps exceeded a given maximum value.
We chose this method over using a fixed amount of timesteps to have the same
accuracy for all the observed frequencies rather than having a decreasing ac-
curacy for data points closer to the diagonal line. The effect of non-evaluated
data points can be seen in Fig. 3.2 as the bright yellow area around the di-
agonal line. For details on solver algorithms, relative tolerance and software
packages, see Sec. 1.5. As derived in Sec. 2.1, we expect the observed fre-
quency in the synchronization region to be a rational combination of the two
frequencies contained in the signal,

ωobs = qω1 + pω2 . (3.4)

We calculated the gradient of the data visualized in Fig. 3.2 with respect to
ω1 and ω2 to extract q and p. The results are illustrated in Figs. ?? and ??.
For details on the numerical derivative, see App. A.

Both signals in synchronization region

In the region of the (ω1, ω2)-plane where both signals are inside the synchro-
nization region, we observe synchronization to rational combinations of the
two frequencies. The combinations (p, q) = (1, 0) and (p, q) = (0, 1) are dom-
inant except for a low detuning |ω1 − ω2| ≈ 0 close to the diagonal. This is
illustrated in Fig. 3.4.

One signal in synchronization region

If one signal is inside the synchronization region and the other signal is out-
side that region, we observe synchronization to the signal closer to the natural
frequency. It is noteworthy that for decreasing detuning between the natural
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Figure 3.4: Both frequencies are inside the synchronization region. We observe
synchronization to rational combinations of ω1 and ω2.

frequency and the second signal, the synchronization region increases in size.
Specifically this means that the presence of a second signal with a different
frequency amplifies synchronization to the first signal. This is illustrated in
Fig. 3.5.

No signal in synchronization region

If both signals are outside of the synchronization region, we observe synchro-
nization to rational combinations in a circle. The rational combinations are
of the form:

ωobs = qω1 + pω2 . (3.5)

For increasing absolute values of q and p the synchronization regions decrease
in size and extend less far into the (ω1, ω2)-plane. Along the diagonal line
where the frequency of both signals coincides, we observe synchronization to
the common frequency. Note that the region directly around the diagonal
line could not be resolved due to technical restrictions described earlier. This
is illustrated in Fig. 3.6.
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Figure 3.5: Upper graph shows a focus on the region where the signal K1 is
inside the synchronization region and signal K2 is outside this region. We observe
synchronization to the signal closer to the natural frequency ω0. The synchroniza-
tion region is shown by the black line. Lower graph shows a horizontal cut for
large ω2.
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Figure 3.6: Focus on the region where both signals are outside the synchro-
nization region. We observe synchronization to rational combinations of the two
frequencies.

Variation of the parameters

To insure that the chosen parameters reflect a general behaviour of a van der
Pol oscillator subject to a weak two-frequency signal we varied the parameter
β, the phase θ, and the ratio of the amplitude of both frequencies. The corre-
sponding results are illustrated in Fig. 3.7, Fig. 3.8, and Fig. 3.9 respectively.
The variation of the phase only affects the behaviour on the diagonal line
where both frequencies coincide. The variation of the parameter β scales the
pattern of synchronization regions but does not influence the pattern itself
much.
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Figure 3.7: Variations of the parameter β. Upper graph β = 0.2, lower graph
β = 0.8.
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Figure 3.8: Different values of the phase
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Figure 3.9: Change of the ratio between the amplitudes of the two signals K1

and K2. Here K1 = 2 and K2 = 0.2.
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3.2 Simulation with noise

To find whether the pattern of synchronization regions persists under the
influence of noise, we added a Gaussian white-noise term ξ(t) to the phase
of the van der Pol oscillator in the following way. For the numerical simula-
tions, the differential equation (2.1) is rewritten into a system of first order
differential equations,

d

dt

(
u
u̇

)
=

(
u̇

2εu̇(1− βu2)− ω2
0u− εK1 cos(ω1t)− εK2 cos(ω2t+ θ)

)
.

(3.6)
To simulate a perturbation transversal to the limit cycle, we now added the
noise term,

~g = ξ(t)

(
−u̇
u

)
1√

u̇2 + u2
, (3.7)

to the system of equations (3.6). As can be expected from the theory
of synchronization in the presence of noise [1], we observe a blurring of the
synchronization borders. In the case of a single-frequency signal this is ex-
plained by an increased phase-slip rate due to the noise [1]. In the case of
two frequencies, the same reasoning applies and is observed in Fig. 3.10a.
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(a) Results of the simulation with the noise term Eq. (3.7) and a prefactor of 0.01,
the same order of magnitude as the signal. The large bright yellow area around
the diagnonal stems from a smaller timelimit we enforced due to the increased
runtime of the stochastic differential equations solver.
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(b) Results of the simulation without the noise term.

Figure 3.10: Simulation (a) with and (b) without Gaussian white-noise term.
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Conclusion

In this report we investigated the synchronization behaviour of a van der Pol
oscillator subject to a two-frequency signal. We reviewed the theory of syn-
chronization of a self-sustained oscillator to a periodic signal, and we detailed
the knowledge on synchronization of such an oscillator to a signal containing
two frequencies. We derived a system of differential equations to examine the
synchronization of the oscillator in a rotating frame of adjustable frequency,
Eqs. (2.13) & (2.12), and presented numerical evidence that the van der Pol
oscillator indeed synchronizes to rational combinations of the frequencies.
We discovered that synchronization regions for integer combinations of the
drive frequencies show a higher stability and that their width decreases with
the sum of the absolute values of the combinations.
We furthermore discovered that these patterns persist under the influence
of Gaussian white noise of the order of the signal with the borders of the
synchronization regions being blurred.
Further investigations could be made into the mechanism that amplifies the
synchronization to one drive in the presence of another drive (region (b)
in Fig. 3.2), the circular shape of the synchronization regions of combined
frequencies, and the halo-like structure appearing in region (c) of Fig. 3.2
around the diagonal towards the end of the synchronization regions.
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List of Symbols

χ General noise term

ν Dimensionless detuning

φ Phase of the solution in phase space

Ω Average velocity of the phase φ

ωborder Border of the synchronization region

ωobs Observed frequency after a period of entrainment

ρ Rotation number

τ Dimensionless time

ξ Gaussian white-noise term in the numerical treatment

a Complex amplitude normalized to the natural amplitude

A Complex amplitude of the approximate solution

e Dimensionless drive strength

K Amplitude of the signal

p Prefactor of the second drive frequency in combination frequencies

q Prefactor of the first drive frequency in combination frequencies

ω0 Natural frequency of the oscillator

ω1 Frequency of the first signal

ω2 Frequency of the second signal

θ1 Constant phase shift of the first signal
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θ2 Constant phase shift of the second signal

K1 Amplitude of the first signal

K2 Amplitude of the second signal

u Amplitude of the signal
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Appendices
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Appendix A

Numerical Differentiation

To compute the gradient of our data we used the following approximation
for the derivative in x- and y-direction:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

By expanding f(x+ h) and f(x− h) one can show that this approximation
is exact up to second order. As h we took the step-size in the respective
direction.
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